Mock Exam 3 Solutions
Problem 1

Ch13.3,Ex. 4

Find the volume of the solid in the first octant (x>0, y>0, z>0) bounded

by the circular paraboloid z = x> + y*, the cylinder x> + y* = 4, and the coordinate
planes.

Solution

The region S in the first quadrant of xy — plane is bounded
by a quarter of the circle x* + y* = 4 and the lines x =0 and
y =0. Although S can be thought of as either a y-simple or
an x-simple region, we shall treat S as the latter and write

its boundary curves as x = /4 — y?,
x=0, and y=0.Thus,

S={(x,}’):OSxS«/4—y2, OSySZ}

Figure 14 shows the region S in the xy — plane. Now our

goal is to calculate V = .”(XZ +y?)dA
S

by means of an iterated integral. This time we first fix y
and integrate along a line

Figure 14) from x=0 and x = /4 — y* and then integrate the results from y=0to y = 2.
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By the trigonometric substitution y = 2sin6, the latter integral can be rewritten as
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Mock Exam 3 Solutions
Problem 2

Ch 13.4,Ex 2

Evaluate J. ydA where S is the region in the first quadrant that is outside the circle
S

r =2 and inside the cardioid r = 2(1+ cos8). The graph of the carioid will be given.

Solution

Since S is an r-simple set, we write the given integral as an iterated polar
integral, with r as the inner variable of integration. In this inner integration, 6
is held fixed; the integration is along the heavy line of Figure 7 from r =2 to
r=2(1+cosH).
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Mock Exam 3 Solutions
Problem 3

Ch 13.6, Ex 3

Find the area of the surface G cut from the hemisphere
x’+y’+z7°=4%,7>0, by the plane z =1 and z = 3.

Solution

The surface of the hemisphere is define

by z=416-x>—y*.
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We will use polar coordinates to find the radius values we find the radius
of the two circles created by the intersections of z =1 and z = 3 with the

hemisphere. We find them to be /7 and /15, respectively.
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Mock Exam 3 Solutions
Problem 4

Evaluate the triple integral of f(x,y,z) = 2xyz over the solid region S in the

first octant bounded by the parabolic cylinder z =2 -1 x* and the plane
z=0,y=x,and y=0.

Solution

The solid region S is shown in Figure 4. The triple integral H_[ 2xyzdV
S

can be evaluated by an iterated integral. We integrate along a vertical
line fromz=0toz=2-1x".
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Mock Exam 3 Solutions
Problem 5

Find the volume of the solid S bounded above by the sphere p =4 and
below by the cone ¢ ==

Solution

The volume is given by V = L OL . p sin¢.
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