
THE CANONICAL RING IS FINITELY GENERATEDCHRISTOPHER D. HACON1. IntroductionLet X be a smooth complex projective variety so that X is a sub-set of PN cut out by �nitely many homogeneous polynomials Pi 2
C[z0; : : : ; zN ]. The canonical bundle of X is denoted by !X so thatfor all m � 0 sections s 2 H0(X;!
mX ) may be locally written asf � (dx1^ : : :^dxn)
m where f is a holomorphic function and x1; : : : ; xnare local parameters on X. The vector spaces H0(X;!
mX ) give rise tothe canonical ring R(!X) :=Mm�0H0(X;!
mX ):This ring is of fundamental importance in the study of the birationalgeometry of higher dimensional varieties. Recall that if X and X 0 arebirational (i.e. they have isomorphic open subsets) then H0(X;!
mX ) �=H0(X 0; !
mX0 ). In particular R(!X) is a birational invariant of X. Thepurpose of this note is to give an overview of recent results in higherdimensional birational algebraic geometry that lead to the proof of thefollowing:Theorem 1.1. Let X be a smooth complex projective variety. Thenthe canonical ring R(!X) is �nitely generated.It should be noted that there are two announced proofs of this re-sult. We will illustrate the approach of [HM05] and [BCHM06] whichis based on the ideas of the minimal model program and in particularon ideas of V. Shokurov [Shokurov03]. This approach uses the meth-ods of higher dimensional birational geometry and has the pleasantfeature that it also allows us to prove many important results on thebirational geometry of higher dimensional complex projective varietiessuch as the existence of 
ips and (under favorable, but not too restric-tive conditions) the termination of certain sequences of 
ips and hencethe existence of minimal models.As mentioned above, there is another proof due to Y.-T. Siu [Siu06].This is completely independent and is based on analytic methods. In1



this paper we will not discuss any of the details of the analytic ap-proach.We now recall some notation. Pn will denote n-dimensional com-plex projective space, i.e. a compacti�cation of Cn obtained by addinga hyperplane (a copy of Pn�1). A complex projective variety in Pnis given by the common zeroes of a �nite set of homogeneous poly-nomials P1; : : : ; Pr 2 C[z0; : : : ; zn]. Given a line bundle L on a va-riety X, H0(X;L) denotes the complex vector space of global sec-tions of L. In particular OPn(1) denotes the hyperplane line bun-dle so that H0(Pn;OPn(r)) may be identi�ed with the homogeneouspolynomials in C[z0; : : : ; zn] of degree r. There is a rational map�L : X 99K PN = PH0(X;L) de�ned as follows: let s0; : : : ; sN be abasis of H0(X;L) and x 2 X, then �L(x) = [s0(x); : : : ; sN(x)]. Notethat �L is unde�ned at any point in the base locus of L.For any line bundle L we let R(L) be the graded ring given byLm�0H0(X;L
m). We remark that if k is a positive integer, thenthe ring R(L) is �nitely generated if and only if so is R(L
k) Thenumber �(L) := tr: deg: R(L)� 1 is the Kodaira dimension of X.For any line bundle L and any curve C � X, we may de�ne L �C =deg(LjC), and for any morphism f : Y ! X we have a line bundle onY given by f �L. Similarly de�nitions also hold for any formal linearcombination of line bundles L =P riLi where ri 2 R.For any birational morphism f : Y ! X, Exc(f) denotes the excep-tional set, so that Y � Exc(f) is the biggest open subset of Y where frestricts to an isomorphism.2. Geometry of curvesCurves are smooth complex projective varieties of dimension 1 alsoknown as Riemann surfaces. These are topologically classi�ed by theirgenus g := dimH0(X;!X) (recall that in this case !X = 
1X = T_X is thecotangent bundle and so g is just the number of linearly independentglobal holomorphic 1-forms). We can divide surfaces in to three roughclasses:(1) g = 0. In this case there is only one possibility: P1. We havethat !X = OP1(�2) so that the elements of H0(P1; !
mX ) �=H0(P1;OP1(�2m)) correspond to homogeneous polynomials ofdegree �2m and hence they are all 0. In particular R(X) �= C.(2) g = 1. In this case there is a 1-parameter family of ellipticcurves. We have that !X = OX and so R(X) �= C[t].(3) g � 2. In this case there is a (3g � 3)-parameter family ofsuch curves. One can consider sections of the line bundle L :=2



!
3X . It is known that the sections of L de�ne an embedding�L : X ! P5g�6 = PH0(L). One has that H0(X;!
3mX ) �=H0(X;OP5g�6(m)jX). For any m � 0 the homomorphismsH0(P5g�6;OP5g�6(m))! H0(X;OP5g�6(m)jX) are surjective. SinceR(OP5g�6(1)) is �nitely generated, then so is R(!X).The natural question is if one can then generalize these results to higherdimensions. 3. Geometry of SurfacesThe �rst problem that one encounters in the classi�cation of sur-faces (i.e. complex projective varieties of dimension 2) is that givenany surface X, one can produce a new surface by blowing up a pointx 2 X. This produces a morphism f : X 0 = blxX ! X which is anisomorphism over X � x and replaces the point x by a �1 curve i.e. arational curve E �= P1 such that E2 = �1. The points of E correspondto the tangent directions at x. It is then reasonable to attempt toclassify surfaces modulo birational isomorphism, so that two surfaces(or higher dimensional varieties) are equivalent if they have isomorphicopen subsets. It is known that two surfaces are birational if they areisomorphic after a �nite sequence of blow ups. By Castelnuovo's cri-terion one may blow down any �1 curve, so that one sees that anysurface is birational to a minimal surface i.e. a surface that containsno �1 curves.The second problem is what invariant should replace the genus inhigher dimension. One option would be to take the topological typeof X, but this notion is too rigid and in particular it is not invariantunder birational maps. It turns out that a better choice is given bythe vector spaces H0(X;!
mX ) for m > 0. An element of H0(X;!
mX )is called a global m-th pluricanonical form. It can be locally written asf � (dz1 ^ dz2)
m where f is a holomorphic function and z1 and z2 arelocal parameters. As mentioned above, we have a graded ring knownas the canonical ring R(!X) =Lm>0H0(X;!
mX ) which is a birationalinvariant of X. One may also de�ne a coarser invariant, known as theKodaira dimension of X given by�(X) = tr: deg:R(!X)� 1 2 f�1; 0; 1; : : : ; dimXg:We say that X is of general type if �(X) = dim(X). For surfaces, wethen have �(X) 2 f�1; 0; 1; 2g.The Enriques-Iitaka classi�cation of surfaces may be described asfollows. 3



(1) �(X) = �1: X is covered by rational curves (in fact X is bira-tional to C�P1 for some curve C of genus g(C) = dimH0(
1X)).Therefore H0(X;!
mX ) �= 0 for all m > 0 and so the canonicalring R(!X) is isomorphic to C.Note that if �(X) = �1, then X has many di�erent minimalsurfaces (but their relationships are well understood). On theother hand, if �(X) � 0, it is known that X has a uniqueminimal surface say X 0.(2) �(X) = 0: X is birational to a unique minimal surface X 0 whichis in one of four well understood classes of surfaces (abelian, K3,Enriques and bielliptic surfaces). One has that !
12X0 �= OX0 .The canonical ring R(!X) is isomorphic to C[t].(3) �(X) = 1: X is covered by elliptic curves. In factX is birationalto a unique minimal surface X 0 which admits a morphism f :X 0 ! C such that !
12X0 = f �L for some line bundle L of positivedegree on C. It then follows that the canonical ring R(!X) is�nitely generated since R(!
12X ) �= R(L) is �nitely generated.(4) �(X) = 2: X is birational to a unique minimal surface X 0such that !X0 is nef (i.e. deg(!X0 jC) � 0 for any curve C �X 0). H0(!
5X0 ) de�nes a birational morphism f : X 0 ! PN =
PH0(!
5X0 ) which contracts all rational curves E �= P1 with E2 =�2 to a rational double point singularity. We therefore havethat !
5X0 �= f �OPN (1) so that R(!X) is �nitely generated andf(X 0) �= ProjR(!X).4. Geometry of ThreefoldsOne would like to generalize the above classi�cation to the case ofthreefolds. This is possible but there are several new features whichmade the problem extremely di�cult. The classi�cation was achievedby work of Kawamata, Koll�ar, Mori, Reid, Shokurov and others whichculminated in Mori's construction of 
ips [Mori88]. The upshot is thefollowing.Theorem 4.1. Let X be a smooth complex projective 3-fold.(1) If �(X) = �1, then X is covered by rational curves.(2) If �(X) � 0, then X has a minimal model.In all cases the canonical ring R(!X) is �nitely generated.It is important to notice that the minimal model is not uniqueand may have mild singularities. We must in fact allow terminalsingularities. These are mild singularities in particular they are ra-tional singularities that occur in codimension � 3 and by de�nition4
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mX is a line bundle for some m > 0 so that we may still de�ne!X � C = 1mdeg(!
mX jC). In dimension 3 these singularities are clas-si�ed, but in higher dimension they are somewhat more mysterious(but still well behaved).There is also an explicit procedure for constructing a minimal modelknown as the minimal model program. To run a minimal model pro-gram, one starts with a terminal complex projective variety X. If !Xis nef, then we are done. Otherwise, letN1(X) = fX ciCijci 2 R; Ci is a curve in Xg= �where C � D (that is the curves C and D are numerically equivalent)if (C � D) � L = 0 for any line bundle L on X. We let �(X) =dimR(N1(X)). Let NE(X) be the closure of the quotient of the coneof e�ective cones on X. If !X is not nef, then by the Cone Theoremthere is an ample line bundle A and a rational number a such that!X 
 A
a is nef and a unique negative extremal ray R = R+[C] whereC is curve in X and !X � C 0 = 0 if and only if [C 0] 2 R. By the BasePoint Free Theorem, there is then a morphism f : X ! Z (surjectivewith connected �bers) such that for any curve D � X, f�D = 0 if andonly if [D] 2 R. There are several cases to consider.(1) If dim(Z) < dim(X), then f : X ! Z is called a Mori �berspace. It has the following properties: �(X)��(Z) = 1; !X �C <0 for any curve contracted by f ; the �bers of f are coveredby rational curves (in fact rationally connected). This gives aclear geometric reason why in this case �(X) = �1 as !X hasnegative degree on this covering family of rational curves and soany element of H0(X;!
mX ) must vanish on this covering familyof rational curves and hence must be 0.(2) If dim(Z) = dim(X) and dim(Exc(f)) = dim(Z) � 1, then fis a divisorial contraction. In this case Z also has terminalsingularities and we may simply replace X by Z. This is theanalog of the contraction of a �1 curve in the surface case. Wehave �(Z) = �(X) � 1 and hence this process can be repeatedonly �nitely many times.(3) If dim(Z) = dim(X) and dim(Exc(f)) < dim(Z) � 1, then fis a small contraction. In this case Z does not have terminalsingularities. In fact !
mX is not a line bundle for any m > 0 andso one cannot make sense of the intersection number !X � C ofsome curves C � X. The (very bold!) solution is then to replaceX by its 
ip. The 
ip of f : X ! Z is a morphism f+ : X+ ! Zsuch that X is isomorphic to X+ outside a codimension � 25



subset, �(X) = �(X+) = �(Z)+1 and !X+ �C > 0 for any curveC � X+ contracted by f+. Therefore a 
ip can be thought of acodimension 2 surgery which replaces some !X negative curvesby !X+ positive curves. Since our goal is to arrive to a minimalmodel (or to a Mori �ber space), this would seem to be a stepin the right direction. The good news is that if the 
ip exists,then it is uniquely de�ned by the formulaX+ = ProjZMm�0 f�(!
mX )and it has mild singularities. There are two items of bad news:First of all it is very hard to prove the existence of X+. Infact (assuming that Z is a�ne) this is equivalent to showingthat R(!X) is �nitely generated as an OZ module. At �rstglance this would seem hopeless as it is equivalent to one of theoriginal motivating problems: to show that R(!X) is �nitelygenerated. Upon further re
ection, one notices that as we wantto only show that R(!X) is �nitely generated over Z, the prob-lem might be more accessible, especially in view of the factthat dim(X) = dim(Z). At any rate, Mori solved the problemin the most geometric (but hardest) possible way: he classi�edall possible 
ipping contractions f : X ! Z of this type andthen constructed the corresponding 
ip X+.Secondly, one must show that any sequence of 
ips termi-nates. Luckily in dimension 3 this is not too di�cult.5. Minimal Model Program for log pairsThe Minimal Model Program is expected to work in the more generalsetting of log pairs. We let KX denote a canonical divisor i.e. a divisorcorresponding to !X . A log pair (X;B) consists of a normal varietyX and a R-divisor B = P biBi (i.e. bi 2 R and Bi are irreduciblecodimension 1 subvarieties) and KX + B is R-Cartier (so that youmay think of it as a formal linear combination of line bundles withreal coe�cients). Therefore, it still makes sense to consider pull-backsf �(KX+B) and to intersect KX+B with curves C � X. In particularwe can ask the question is (X;B) a minimal model? i.e. is (KX +B) �C � 0 for any curve C � X.Just as in the case with no boundary (i.e. B = 0), we hope to�nd a birational map � : X 99K Y consisting of 
ips and divisorialcontractions such that either(1) (Y; ��B) is a minimal model (i.e. KY + ��B is nef), or6



(2) (Y; ��B) is a Mori �ber space (i.e. there is a surjective morphismwith connected �bers f : Y ! S such that �(Y ) � �(S) = 1and �(KY + ��B) � C < 0 for any curve C contracted by f).To achieve this we must require that the pair (X;B) have mild singular-ities. It turns out that one should require that (X;B) have kawamatalog terminal singularities, so that if we have f : X 0 ! X a morphismfrom a smooth variety X 0 such that the components of the transformof B and of the exceptional divisor are smooth and transverse, then wemay write f �(KX +B) = KX0 +B0 where B0 =P b0iB0i, f�B0 = B andb0i < 1 for all i.The Cone Theorem is known to hold for kawamata log terminal pairsin any dimension. Therefore the main questions to answer are:Question 5.1. Let (X;B) be a kawamata log terminal pair.(1) Do 
ips exists?(2) Is any given sequence of 
ips �nite?A positive answer to these questions would then allow us to constructminimal models in all dimension and hence show that pluricanonicalrings are �nitely generated.6. Higher dimensional varietiesUsing ideas of Shokurov, in [BCHM06] it is shown that:Theorem 6.1. Let (X;�) be a kawamata log terminal pair such thatone of the following holds:(1) �(KX +B) = dimX, or(2) �(B) = dimX, or(3) (X;B) is not pseudo-e�ective, (i.e. for some ample divisor Aand some 0 < �� 1, we have �(KX +B + �A) = �1).Then there exists a �nite sequence of 
ips and divisorial contractions� : X 99K Y such that (Y; ��B) is either a minimal model or is a Mori�ber space.Corollary 6.2. If X is a smooth complex projective variety, then itscanonical ring R(KX) is �nitely generated.Proof. This follows from a result of Mori and Fujino [FM00] accordingto which it su�ces to prove �nite generation for any kawamata logterminal pair (Y;B) with �(KY +B) = dimY . ˜We remark that we prove that 
ips of kawamata log terminal pairsexist in all dimensions but we do not show that sequences of 
ips ter-minate. What we show is that under the right hypothesis, there exists7



a carefully chosen sequence of 
ips that terminates. These sequencesof 
ips are know as 
ips with scaling. To explain this, suppose thatwe have a kawamata log terminal pair (X;B), then we may choose anample divisor A and a number 0 < �0 � 1 such that KX +B + �0A isample (and hence nef). Then we let�1 := infft > 0jKX +B + tA is nefg:If �1 = 0, we are done as KX +B is nef. Otherwise there is a KX +Bnegative extremal ray R = R+[C] such that (KX+B+�1A)�C = 0. If Rinduces a Mori �ber space, we are also done. Otherwise, we perform thecorresponding 
ip or divisorial contraction say �1 : X 99K X1. Since(KX+B+�1A)�C = 0 it follows that alsoKX1+(�1)�B+�1(�1)�A is nef.We may therefore repeat this procedure. Proceeding in this way, weobtain a sequence of 
ips and divisorial contractions �i : Xi�1 99K Xiand numbers 0 � �i�1 � �i � 1 such that KXi + Bi + �iAi is nef. Thissequence ends if �n = 0 or if we obtain a Mori �ber space. Otherwisewe have an in�nite sequence of minimal models (Xi; Bi + �iAi):The key idea is that if �(B) = dimX, then by using a compact-ness argument, we can show that there are only �nitely many distinctminimal models for (X;B + tA) where 0 � t � 1.In order to show that 
ips exist, we use Shokurov's so called reduc-tion to PL-
ips. The PL here stands for pre-limiting. Recall that givena 
ipping contraction f : X ! Z, to construct the 
ip of X, it su�cesto show thatR(KX +B) =Mm�0H0(X;OX(m(KX +B)))is �nitely generated as an OZ algebra (here we are assuming for sim-plicity that Z is a�ne). The main idea is that after the reductionto PL-
ips, we may assume that B = B0 +P biBi where bi 2 Q and0 � bi < 1 (more precisely the pair (X;B) is purely log terminal so thatif � : X 0 ! X is a birational map and KX0 + B0 = ��(KX + B), thenall coe�cients of B0 are < 1 except for the coe�cient of the transformof B0 which equals 1). We may also assume that a further techni-cal condition holds, namely that for some positive number q, we have(KX+B�qB0) �C = 0 for all curves C � X contracted by f : X ! Z.We then let S := B0 and we look at the restriction map	 :Mm�0H0(X;OX(m(KX +B)))!Mm�0H0(S;OS(m(KS +BS))):From the de�nition of purely log terminal singularity, one can see thatthe pair (S;BS) is kawamata log terminal. The idea is that the kernelof this map of graded rings is essentially a principal ideal so that in8
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