THE CANONICAL RING IS FINITELY GENERATED

CHRISTOPHER D. HACON

1. INTRODUCTION

Let X be a smooth complex projective variety so that X is a sub-
set of PV cut out by finitely many homogeneous polynomials P; €

Clz0,---,2n]. The canonical bundle of X is denoted by wx so that
for all m > 0 sections s € H°(X,w{™) may be locally written as
f-(dxy A . Adx,)®™ where f is a holomorphic function and x4, ..., x,

are local parameters on X. The vector spaces H°(X,w$™) give rise to
the canonical ring

R(wy) := @ H(X,w§™).

m>0

This ring is of fundamental importance in the study of the birational
geometry of higher dimensional varieties. Recall that if X and X' are
birational (i.e. they have isomorphic open subsets) then H°(X, w§™)
H(X',w%™). In particular R(wx) is a birational invariant of X. The
purpose of this note is to give an overview of recent results in higher
dimensional birational algebraic geometry that lead to the proof of the

following:

Theorem 1.1. Let X be a smooth complex projective variety. Then
the canonical ring R(wx) is finitely generated.

It should be noted that there are two announced proofs of this re-
sult. We will illustrate the approach of [HM05] and [BCHMO06] which
is based on the ideas of the minimal model program and in particular
on ideas of V. Shokurov [Shokurov03]. This approach uses the meth-
ods of higher dimensional birational geometry and has the pleasant
feature that it also allows us to prove many important results on the
birational geometry of higher dimensional complex projective varieties
such as the existence of flips and (under favorable, but not too restric-
tive conditions) the termination of certain sequences of flips and hence
the existence of minimal models.

As mentioned above, there is another proof due to Y.-T. Siu [Siu06].

This is completely independent and is based on analytic methods. In
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this paper we will not discuss any of the details of the analytic ap-
proach.

We now recall some notation. P" will denote n-dimensional com-
plex projective space, i.e. a compactification of C" obtained by adding
a hyperplane (a copy of P"!). A complex projective variety in P"
is given by the common zeroes of a finite set of homogeneous poly-
nomials Py,..., P, € Clz,...,2,]. Given a line bundle L on a va-
riety X, H°(X,L) denotes the complex vector space of global sec-
tions of L. In particular Opn(1) denotes the hyperplane line bun-
dle so that H°(P", Opx(r)) may be identified with the homogeneous
polynomials in C[z,..., z,] of degree r. There is a rational map
¢ X --» PV = PH°(X, L) defined as follows: let sg,...,sy be a
basis of H*(X,L) and = € X, then ¢.(z) = [so(z),...,sn(x)]. Note
that ¢y, is undefined at any point in the base locus of L.

For any line bundle L we let R(L) be the graded ring given by
@D,,-o H* (X, L®™). We remark that if k is a positive integer, then
the ring R(L) is finitely generated if and only if so is R(L®*) The
number k(L) := tr. deg. R(L) — 1 is the Kodaira dimension of X.

For any line bundle L and any curve C C X, we may define L -C =
deg(L|¢), and for any morphism f : Y — X we have a line bundle on
Y given by f*L. Similarly definitions also hold for any formal linear
combination of line bundles L = ) r;L; where r; € R.

For any birational morphism f : Y — X, Exc(f) denotes the excep-
tional set, so that Y — Exc(f) is the biggest open subset of Y where f
restricts to an isomorphism.

2. GEOMETRY OF CURVES

Curves are smooth complex projective varieties of dimension 1 also
known as Riemann surfaces. These are topologically classified by their
genus ¢ := dimH°(X, wy) (recall that in this case wx = QL = Ty is the
cotangent bundle and so g is just the number of linearly independent
global holomorphic 1-forms). We can divide surfaces in to three rough
classes:

(1) g = 0. In this case there is only one possibility: P!. We have
that wy = Op(—2) so that the elements of H°(P! w{™) =
H°(P', Op1(—2m)) correspond to homogeneous polynomials of
degree —2m and hence they are all 0. In particular R(X) = C.

(2) ¢ = 1. In this case there is a l-parameter family of elliptic
curves. We have that wy = Ox and so R(X) = C[t].

(3) ¢ > 2. In this case there is a (3g — 3)-parameter family of

such curves. One can consider sections of the line bundle L :=
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w3, It is known that the sections of L define an embedding

¢r : X — P65 = PHO(L). One has that HO(X,w$™™) =
H°(X, Opsy—s(m)|x). For any m > 0 the homomorphisms
H° (P95, Opsy—s(m)) — H°(X, Opsy—s(m)|x) are surjective. Since
R(Opsg-6(1)) is finitely generated, then so is R(wy).

The natural question is if one can then generalize these results to higher
dimensions.

3. GEOMETRY OF SURFACES

The first problem that one encounters in the classification of sur-
faces (i.e. complex projective varieties of dimension 2) is that given
any surface X, one can produce a new surface by blowing up a point
x € X. This produces a morphism f : X’ = bl,X — X which is an
isomorphism over X — x and replaces the point x by a —1 curve i.e. a
rational curve F = P! such that £? = —1. The points of E correspond
to the tangent directions at x. It is then reasonable to attempt to
classify surfaces modulo birational isomorphism, so that two surfaces
(or higher dimensional varieties) are equivalent if they have isomorphic
open subsets. It is known that two surfaces are birational if they are
isomorphic after a finite sequence of blow ups. By Castelnuovo’s cri-
terion one may blow down any —1 curve, so that one sees that any
surface is birational to a minimal surface i.e. a surface that contains
no —1 curves.

The second problem is what invariant should replace the genus in
higher dimension. One option would be to take the topological type
of X, but this notion is too rigid and in particular it is not invariant
under birational maps. It turns out that a better choice is given by
the vector spaces HO(X,w§™) for m > 0. An element of H(X,w§™)
is called a global m-th pluricanonical form. It can be locally written as
[ (dzy A dze)®™ where f is a holomorphic function and z; and 2z, are
local parameters. As mentioned above, we have a graded ring known
as the canonical ring R(wx) = @, H°(X,w§™) which is a birational
invariant of X. One may also define a coarser invariant, known as the
Kodaira dimension of X given by

k(X) =tr. deg.R(wx) — 1 € {-1,0,1,...,dim X }.

We say that X is of general type if k(X)) = dim(X). For surfaces, we
then have x(X) € {-1,0,1,2}.
The Enriques-litaka classification of surfaces may be described as

follows.
3



(1) k(X) = —1: X is covered by rational curves (in fact X is bira-
tional to C' x P! for some curve C' of genus ¢(C) = dimH°(QY)).
Therefore H°(X,w$™) = 0 for all m > 0 and so the canonical
ring R(wx) is isomorphic to C.

Note that if £(X) = —1, then X has many different minimal
surfaces (but their relationships are well understood). On the
other hand, if x(X) > 0, it is known that X has a unique
minimal surface say X'.

(2) k(X) = 0: X is birational to a unique minimal surface X’ which
is in one of four well understood classes of surfaces (abelian, K3,
Enriques and bielliptic surfaces). One has that w}%u = Oxr.
The canonical ring R(wx) is isomorphic to C[t].

(3) k(X) = 1: X is covered by elliptic curves. In fact X is birational
to a unique minimal surface X’ which admits a morphism f :
X' — C such that w?},w = f*L for some line bundle L of positive
degree on C. It then follows that the canonical ring R(wx) is
finitely generated since R(w$') = R(L) is finitely generated.

(4) k(X) = 2: X is birational to a unique minimal surface X'
such that wx: is nef (i.e. deg(wx/|c) > 0 for any curve C' C
X'). H%w$?) defines a birational morphism f : X' — PV =
PH®(w$?) which contracts all rational curves E =2 P! with E? =
—2 to a rational double point singularity. We therefore have
that w? = f*Opn (1) so that R(wy) is finitely generated and
F(X") 2 ProjR(wx).

4. GEOMETRY OF THREEFOLDS

One would like to generalize the above classification to the case of
threefolds. This is possible but there are several new features which
made the problem extremely difficult. The classification was achieved
by work of Kawamata, Kollar, Mori, Reid, Shokurov and others which
culminated in Mori’s construction of flips [Mori88]. The upshot is the
following.

Theorem 4.1. Let X be a smooth complex projective 3-fold.

(1) If k(X) = —1, then X is covered by rational curves.
(2) If k(X) >0, then X has a minimal model.

In all cases the canonical ring R(wy) is finitely generated.

It is important to notice that the minimal model is not unique
and may have mild singularities. We must in fact allow terminal
singularities. These are mild singularities in particular they are ra-

tional singularities that occur in codimension > 3 and by definition
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w¥™ is a line bundle for some m > 0 so that we may still define

wx - C = Ldeg(w{™|¢). In dimension 3 these singularities are clas-
sified, but in higher dimension they are somewhat more mysterious
(but still well behaved).

There is also an explicit procedure for constructing a minimal model
known as the minimal model program. To run a minimal model pro-
gram, one starts with a terminal complex projective variety X. If wx
is nef, then we are done. Otherwise, let

Ny (X) = {Zci0i|ci €R, C;isacurvein X}/ =

where C' = D (that is the curves C' and D are numerically equivalent)
if (C —D)-L = 0 for any line bundle L on X. We let p(X) =
dimg(N;(X)). Let NE(X) be the closure of the quotient of the cone
of effective cones on X. If wx is not nef, then by the Cone Theorem
there is an ample line bundle A and a rational number a such that
wy ® A% is nef and a unique negative extremal ray R = RT[C] where
C'is curve in X and wy - C" = 0 if and only if [C'] € R. By the Base
Point Free Theorem, there is then a morphism f : X — Z (surjective
with connected fibers) such that for any curve D C X, f.D = 0 if and
only if [D] € R. There are several cases to consider.

(1) If dim(Z) < dim(X), then f : X — Z is called a Mori fiber
space. It has the following properties: p(X)—p(Z) = 1; wx-C <
0 for any curve contracted by f; the fibers of f are covered
by rational curves (in fact rationally connected). This gives a
clear geometric reason why in this case k(X) = —1 as wy has
negative degree on this covering family of rational curves and so
any element of H(X,w$™) must vanish on this covering family
of rational curves and hence must be 0.

(2) If dim(Z) = dim(X) and dim(Exc(f)) = dim(Z) — 1, then f
is a divisorial contraction. In this case Z also has terminal
singularities and we may simply replace X by Z. This is the
analog of the contraction of a —1 curve in the surface case. We
have p(Z) = p(X) — 1 and hence this process can be repeated
only finitely many times.

(3) If dim(Z) = dim(X) and dim(Exc(f)) < dim(Z) — 1, then f
is a small contraction. In this case Z does not have terminal
singularities. In fact w$™ is not a line bundle for any m > 0 and
so one cannot make sense of the intersection number wy - C of
some curves C' C X. The (very bold!) solution is then to replace
X by its flip. Theflipof f : X — Zisamorphism f*: Xt — Z
such that X is isomorphic to X outside a codimension > 2
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subset, p(X) = p(XT) = p(Z)+1 and wx+-C > 0 for any curve
C C X contracted by f*. Therefore a flip can be thought of a
codimension 2 surgery which replaces some wy negative curves
by wx+ positive curves. Since our goal is to arrive to a minimal
model (or to a Mori fiber space), this would seem to be a step
in the right direction. The good news is that if the flip exists,
then it is uniquely defined by the formula

X+ = Proj, (P fu(wi™)

m>0

and it has mild singularities. There are two items of bad news:

First of all it is very hard to prove the existence of X*. In
fact (assuming that Z is affine) this is equivalent to showing
that R(wy) is finitely generated as an Oy module. At first
glance this would seem hopeless as it is equivalent to one of the
original motivating problems: to show that R(wy) is finitely
generated. Upon further reflection, one notices that as we want
to only show that R(wy) is finitely generated over Z, the prob-
lem might be more accessible, especially in view of the fact
that dim(X) = dim(Z). At any rate, Mori solved the problem
in the most geometric (but hardest) possible way: he classified
all possible flipping contractions f : X — Z of this type and
then constructed the corresponding flip X .

Secondly, one must show that any sequence of flips termi-
nates. Luckily in dimension 3 this is not too difficult.

5. MINIMAL MODEL PROGRAM FOR LOG PAIRS

The Minimal Model Program is expected to work in the more general
setting of log pairs. We let Kx denote a canonical divisor i.e. a divisor
corresponding to wx. A log pair (X, B) consists of a normal variety
X and a R-divisor B = > b;B; (i.e. b; € R and B; are irreducible
codimension 1 subvarieties) and Kx + B is R-Cartier (so that you
may think of it as a formal linear combination of line bundles with
real coefficients). Therefore, it still makes sense to consider pull-backs
[*(Kx + B) and to intersect K x + B with curves C' C X. In particular
we can ask the question is (X, B) a minimal model? i.e. is (Kx + B) -
C > 0 for any curve C C X.

Just as in the case with no boundary (i.e. B = 0), we hope to
find a birational map ¢ : X --» Y consisting of flips and divisorial
contractions such that either

(1) (Y, ¢.B) is a minimal model (i.e. Ky + ¢, B is nef), or
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(2) (Y, ¢.B) is a Mori fiber space (i.e. there is a surjective morphism
with connected fibers f : Y — S such that p(Y) — p(S) =1
and —(Ky + ¢.B) - C < 0 for any curve C' contracted by f).

To achieve this we must require that the pair (X, B) have mild singular-
ities. It turns out that one should require that (X, B) have kawamata
log terminal singularities, so that if we have f : X’ — X a morphism
from a smooth variety X’ such that the components of the transform
of B and of the exceptional divisor are smooth and transverse, then we
may write f*(Kx + B) = Kx: + B’ where B’ =) VB!, f.B' = B and
b < 1 for all i.

The Cone Theorem is known to hold for kawamata log terminal pairs
in any dimension. Therefore the main questions to answer are:

Question 5.1. Let (X, B) be a kawamata log terminal pair.
(1) Do flips exists?
(2) Is any given sequence of flips finite?

A positive answer to these questions would then allow us to construct
minimal models in all dimension and hence show that pluricanonical
rings are finitely generated.

6. HIGHER DIMENSIONAL VARIETIES
Using ideas of Shokurov, in [BCHMO6] it is shown that:

Theorem 6.1. Let (X,A) be a kawamata log terminal pair such that
one of the following holds:

(1) k(Kx + B) =dim X, or

(2) k(B) =dim X, or

(3) (X, B) is not pseudo-effective, (i.e. for some ample divisor A

and some 0 < € < 1, we have k(Kx + B+ €A) = —1).

Then there exists a finite sequence of flips and divisorial contractions
¢ : X --»Y such that (Y, ¢.B) is either a minimal model or is a Mori
fiber space.

Corollary 6.2. If X is a smooth complex projective variety, then its
canonical ring R(Kx) is finitely generated.

Proof. This follows from a result of Mori and Fujino [FMO00] according
to which it suffices to prove finite generation for any kawamata log
terminal pair (Y, B) with x(Ky + B) = dimY". O

We remark that we prove that flips of kawamata log terminal pairs
exist in all dimensions but we do not show that sequences of flips ter-

minate. What we show is that under the right hypothesis, there exists
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a carefully chosen sequence of flips that terminates. These sequences
of flips are know as flips with scaling. To explain this, suppose that
we have a kawamata log terminal pair (X, B), then we may choose an
ample divisor A and a number 0 < 75 < 1 such that Ky + B + 5A is
ample (and hence nef). Then we let

7 :=inf{t > 0|Kx + B + tA is nef}.

If 1 = 0, we are done as Ky + B is nef. Otherwise there is a Kx + B
negative extremal ray R = R™[C] such that (Kx+B+71A)-C =0. If R
induces a Mori fiber space, we are also done. Otherwise, we perform the
corresponding flip or divisorial contraction say ¢; : X --» X;. Since
(Kx+B+1A)-C = 01t follows that also Ky, +(¢1).B+71(d1).A is nef.
We may therefore repeat this procedure. Proceeding in this way, we
obtain a sequence of flips and divisorial contractions ¢; : X;_; --+ X;
and numbers 0 < 7,y < 7; <1 such that Kx, + B; + 7;A; is nef. This
sequence ends if 7, = 0 or if we obtain a Mori fiber space. Otherwise
we have an infinite sequence of minimal models (X;, B; + 1;4;).

The key idea is that if k(B) = dim X, then by using a compact-
ness argument, we can show that there are only finitely many distinct
minimal models for (X, B +tA) where 0 < ¢ < 1.

In order to show that flips exist, we use Shokurov’s so called reduc-
tion to PL-flips. The PL here stands for pre-limiting. Recall that given
a flipping contraction f : X — Z, to construct the flip of X, it suffices
to show that

R(Kx + B) = @ H'(X, Ox(m(Kx + B)))
m>0
is finitely generated as an Oy algebra (here we are assuming for sim-
plicity that Z is affine). The main idea is that after the reduction
to PL-flips, we may assume that B = By + ) _ b;B; where b; € Q and
0 < b; < 1 (more precisely the pair (X, B) is purely log terminal so that
if v: X' — X is a birational map and Kx. + B' = v*(Kx + B), then
all coeflicients of B' are < 1 except for the coefficient of the transform
of By which equals 1). We may also assume that a further techni-
cal condition holds, namely that for some positive number ¢, we have
(Kx+B—¢By)-C =0 for all curves C C X contracted by f: X — Z.
We then let S := By and we look at the restriction map

U P H(X,Ox(m(Kx + B))) = €D H'(S, Os(m(Ks + By))).
m>0 m>0
From the definition of purely log terminal singularity, one can see that
the pair (S, Bg) is kawamata log terminal. The idea is that the kernel

of this map of graded rings is essentially a principal ideal so that in
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order to show that R(Kx + B) is finitely generated, it suffices to show
that Im(W) is finitely generated. Therefore if U is surjective, we can
then conclude by induction on the dimension. Unluckily this is too
much to expect. However, in [HMO05], we show that after replacing X
and S by suitable birational models, there is a divisor 0 < © < Bg
such that
Im(¥) = @ H(S, Os(m(Ks + ©))).
m>0

Note that (S,0) is also a kawamata log terminal pair and so if the
coefficients of © are rational we are once again done by induction on
the dimension. It should be remarked however that © is obtained by
a limiting procedure and hence is a priori only an R-divisor. This
problem can be addressed (as already observed by Shokurov) by using
techniques of diophantine approximation.
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