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1. Introduction

Let X be a smooth complex projective variety of dimension n. In order to study
the geometry of X one would like to choose a natural embedding X ⊂ PN

C . This
is equivalent to the choice of a very ample line bundle L onX i.e. of a line bundle
L such that its sections define an embedding

φL : X ↪→ PH0(X,L).

(If s0, . . . , sN is a basis of H0(X,L), then we let φL(x) = [s0(x) : . . . : sN (x)].)
Conversely, given an embedding φ : X ↪→ PN

C , we have that L := φ∗OPN (1) is
a very ample line bundle on X. Since any projective variety X may have many
different embeddings in PN it is important to find a “natural” choice of this
embedding (or equivalently a natural choice of a very ample line bundle).
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The only known natural choice is the canonical bundle ωX = ∧nT∨
X and its

tensor powers ω⊗m
X for m ∈ Z.

When dimX = 1, we have that ωX is a line bundle of degree degωX = 2g−2
where g denotes the genus of X so that degωX > 0 if and only if g ≥ 2. There
exist curves with genus g ≥ 2 such that ωX is not very ample, however we have
the following classical result.

Theorem 1.1. If X is a curve of genus g ≥ 2, then ω⊗m
X is very ample for

any integer m ≥ 3.

Proof. Let φm = φω⊗m
X

. In order to show the theorem, we must show that φm

is a morphism and separates points and tangent directions. This is equivalent
to showing (cf. [Hartshorne77, II.7.3, IV.3.1]) that

1. h0(X,ω⊗m
X (−P )) = h0(X,ω⊗m

X )− 1 for any P ∈ X, and

2. h0(X,ω⊗m
X (−P −Q)) = h0(X,ω⊗m

X )− 2 for any points P and Q on X.

Considering the short exact sequence of coherent sheaves on X

0 → ω⊗m
X (−P ) → ω⊗m

X → CP → 0

(where the last homomorphism is given by evaluating sections at P ) we obtain
a short exact sequence of vector spaces over C

0 → H0(X,ω⊗m
X (−P )) → H0(X,ω⊗m

X ) → C → H1(X,ω⊗m
X (−P )) . . .

Since degω
⊗(1−m)
X (P ) = (1−m)(2g − 2)− 1 < 0, we have that

H1(X,ω⊗m
X (−P )) ∼= H0(X,ω

⊗(1−m)
X (P ))∨ = 0,

and so the homomorphism H0(X,ω⊗m
X ) → C is surjective (or equivalently

h0(X,ω⊗m
X (−P )) = h0(X,ω⊗m

X )− 1). Therefore φm is a morphism.
The proof that φm separates points and tangent directions is similar.

Remark 1.2. Note that:

1. If L is a line bundle, then L(−P ) denotes the coherent sheaf of sections
of L vanishing at P . Since dimX = 1 this is also a line bundle.

2. h0(X,L) denotes the dimension of the C-vector space H0(X,L).

3. The isomorphism H1(X,ω⊗m
X (−P )) ∼= H0(X,ω

⊗(1−m)
X (P ))∨ is implied

by Serre Duality: If X is a smooth projective variety of dimension n and
F is locally free, then Hi(X,F ) ∼= Hn−i(X,ωX ⊗ F∨)∨.

4. The vanishing H1(X,ω⊗m
X (−P )) is also implied by Kodaira vanishing

which says that if X is a smooth projective variety and L is an ample
line bundle, then Hi(X,ωX ⊗ L) = 0 for all i > 0.
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It follows that we can hope to use somemultiple of ωX to study the geometry
of most varieties. In dimension ≥ 2 the situation is further complicated by the
fact that there exist (smooth) birational varieties which are not isomorphic. For
example if P ∈ X is a point on a smooth projective surface (i.e. dimX = 2),
then one can construct a new surface X ′ = BlPX the blow up of X at P
such that there is a morphism f : X ′ → X which is an isomorphism over
the complement of P and whose fiber over P is a curve E ⊂ X ′ which is
isomorphic to P1 ∼= P(TxX). It is easy to see that E · E = −1 and (since
ωX′ = f∗ωX ⊗ OX(E)) that ωX′ · E = −1. Therefore, E is known as a −1-
curve.

Consider now the example of a quintic surface X ⊂ P3 which is a smooth
surface defined by a homogeneous polynomial of degree 5 in C[x0, . . . , x3]. By
adjunction, one has ωX

∼= ωP3(X)⊗OX
∼= OP3(1)|X so that ωX is very ample

(and φ1 : X ↪→ P3 coincides with the given embedding). However, if f : X ′ → X
is the blow up of X at a point P ∈ X and E is the exceptional curve, then
ωX′ · E = −1. Therefore, for any m > 0, sections of H0(X ′, ω⊗m

X′ ) must vanish
along E and so φm is not a morphism along points of E. If we remove the
singularities of φm (or more precisely we subtract the fixed divisor mE of ω⊗m

X′ ),
we obtain a morphism φω⊗m

X′ (−mE) : X
′ → P3 whose image is X.

Therefore in dimension ≥ 2, we can not expect that, for most varieties,
multiples of ωX define an embedding in projective space. We can only hope
that for most varieties, multiples of ωX define a birational map (i.e. there is an
open subset of X on which the given map is an embedding).

We have the following definition.

Definition 1.3. Let X be a smooth projective variety, then X is of general
type if the sections of ω⊗m

X define a birational map for some m > 0.

It is known that if X is of general type, then in fact the sections of ω⊗m
X

define a birational map for all sufficiently big integers m > 0.
When dimX = 2 (and X is of general type), it is known by a result of

Bombieri (cf. [Bombieri70]) that:

Theorem 1.4. If X is a surface of general type, then φm is birational for all
m ≥ 5.

In fact we have that (after subtracting the fixed divisor) φm : X → PN is
a morphism whose image Xcan is uniquely determined by Xcan

∼= ProjR(ωX)
where R(ωX) = ⊕m≥0H

0(X,ω⊗m
X ) is the canonical ring. Note that Xcan has

rational double point singularities so that ωXcan
is a line bundle. We have ωX =

φ∗
mωXcan

⊗OX(E) for some effective exceptional divisor E or equivalently ω⊗m
X ⊗

OX(−mE) ∼= φ∗
mOPN (1).

Since Xcan may be singular, it is convenient to consider the minimal desin-
gularization Xmin → Xcan. For surfaces of general type, the minimal model
is uniquely determined. It can also be obtained from X by contracting all −1
curves. Therefore there is a morphism X → Xmin. It is known that ω⊗m

Xmin
is
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base point free for all m ≥ 5 (in fact φm defines the morphism Xmin → Xcan

and φ∗
mωXcan

= ωXmin
).

By Riemann-Roch and (a generalization of) Kodaira vanishing, we have
that for all m ≥ 2

h0(ω⊗m
X ) = h0(ω⊗m

Xmin
) =

m(m− 1)

2
K2

Xmin
+ χ(OXmin

)

where K2
Xmin

∈ Z>0 is the self intersection of the canonical divisor KXmin
(a

divisor corresponding to the zeroes of a section of ωXmin
). Note that as X is of

general type

χ(OX) = χ(OXmin
) =

∑

(−1)ihi(OXmin
) > 0.

In particular we have that for all m ≥ 2

Pm(X) := h0(ω⊗m
X ) >

m(m− 1)

2
K2

Xmin
.

One important consequence of the above results is that Xcan is a subvariety

of P10K2

Xmin
+χ(OXmin

)−1 of degree 25K2
Xmin

. It follows by a Hilbert scheme type
argument that there exists a parameter space for canonical (and hence also for
minimal) surfaces of general type:

Theorem 1.5. Let M ∈ Z>0. There exists a morphism X → S such that
for any s ∈ S, the fiber Xs is a canonical surface of general type and for any
canonical surface of general type X such that K2

X ≤ M , there is a point s ∈ S
and an isomorphism X ∼= Xs .

Remark 1.6. The moduli space for minimal complex projective surfaces of
general type was constructed in [Gieseker77].

It is then important to generalize (1.4) to higher dimensions. Even though
many of the features of the classification of surfaces of general type were shown
to hold for threefolds in the 80’s (cf. [Kolláretal92]), the generalization of
(1.4) turned out to be more difficult than expected and was only completed
in [Tsuji07], [HM06] and [Takayama06]. One of the difficulties encountered, is
that in dimension ≥ 3 even though minimal models Xmin are known to exist
(but are not uniquely determined cf. [BCHM09]), they have mild (terminal) sin-
gularities and so KdimX

Xmin
is a positive rational number. In fact the threefold X46

given by a degree 46 hypersurface in weighted projective space P(4, 5, 6, 7, 23),
satisfies K3

Xmin
= 1/420 and φm is birational if and only if m = 23 or m ≥ 27

(cf. [Iano-Fletcher00]). A further complication is given by the fact that we have
little control over other terms of the Riemann-Roch formula for multiples of the
canonical bundle (however see Section 2.1 for the 3-fold case). In particular we
do not control χ(OX). (This should be contrasted with the above mentioned
results for surfaces: K2

Xmin
≥ 1 and χ(OX) ≥ 1.)

Using ideas of Tsuji, the following result was proven in [HM06],
[Takayama06] and [Tsuji07].



Boundedness Results in Birational Geometry 431

Theorem 1.7. For any positive integer n, there exists an integer rn such that
if X is a smooth variety of general type and dimension n, then φr : X 99K

P(H0(X,ω⊗r
X )) is birational for all r ≥ rn.

In fact it turns out that proving the above result is equivalent to showing
that the volume

vol(ωX) := lim
m→∞

n!h0(ω⊗m
X )

mn

is bounded from below by a positive constant vn depending only on the dimen-
sion n = dimX. We will discuss the ideas behind the proof of this result in
Section 2.

Remark 1.8. Notice that in characteristic p > 0 Theorem 1.7 is only known
to hold in dimension ≤ 2.

It should be observed that the proof (1.7) is not effective so that we are
unable to compute rn the minimum integer such that φr is birational for all
n-dimensional varieties of general type and for all r ≥ rn.

Recently, effective results were proven for 3-folds of general type. In
[Todorov07], it is shown that if vol(ωX) is sufficiently big, then φm is bira-
tional for all m ≥ 5 (see [DiBiagio10] for related results in dimension 4). In
[CC08], J. A. Chen and M. Chen show the following almost optimal result.

Theorem 1.9. Let X be a smooth projective 3-fold of general type, then φr is
birational for all r ≥ 77.

Their proof is based on a detailed analysis of Reid’s exact plurigenera for-
mula for threefolds (see also [CC08b], [Zhu09a], [Zhu09b] for related results).
In higher dimensions the situation is more complicated and effective results are
not known.

Naturally, one may ask whether similar results are known for varieties not
of general type. Recall that by definition the Kodaira dimension of a complex
projective variety X is given by

κ(X) = max{dimφm(X)|m ∈ Z>0}.

Here we make the convention that if h0(ω⊗m
X ) = 0 for all m ∈ Z>0, then

κ(X) = −1 so that κ(X) ∈ {−1, 0, 1, . . . , dimX}. Note that in this case some
authors define κ(X) = −∞ (instead of κ(X) = −1) and some others simply say
κ(X) < 0. With our convention we have κ(X) = tr.deg.CR(ωX)−1. (Note that
by [BCHM09], the graded ring R(ωX) is finitely generated.) Another equivalent
definition is κ(X) = dimProjR(ωX). In fact, φr is birational to the Iitaka
fibration and its image is birational to ProjR(ωX) for all sufficiently divisible
integers r > 0. The natural conjecture is then:

Conjecture 1.10. Fix n ∈ Z>0 and κ ∈ Z≥0. Then there exist a positive
integer kn depending only on n and κ such that for all smooth complex projective
varieties of dimension dimX = n and Kodaira dimension κ(X) = κ, the image
of φr is birational to ProjR(ωX) for all integers r > 0 divisible by kn.
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By work of Fujino and Mori cf. [FM00], it is known that there exist positive
integers m1 and m2 such that

R(KX)(m1) ∼= R(KZ +B)(m2)

where (Z,B) is a klt pair of general type birational to ProjR(ωX) and for any
positive integer m, R(m) = ⊕t≥0Rmt is the m-th truncation of the graded ring
R = ⊕t≥0Rt. Therefore, this problem is closely related to the natural problem
of studying pluricanonical maps for varieties of log general type. These issues
will be discussed in Section 3.

Pluricanonical maps for varieties of log general type also arise when studying
the automorphism groups of varieties of general type. We now illustrate this in
dimension 1.

Theorem 1.11 (Hurwitz). Let X be a curve of genus g ≥ 2 with automorphism
group G. Then |G| ≤ 84(g − 1).

Proof. Let f : X → Y = X/G be the induced morphism, then

KX = f∗

(

KY +
∑

(

1−
1

ni

)

Pi

)

where ni is the order of ramification of f over Pi. We have

2(g − 1) = degKX = |G| · deg

(

KY +
∑

(

1−
1

ni

)

Pi

)

.

Therefore, the theorem follows since by (1.12), we have

deg

(

KY +
∑

(

1−
1

ni

)

Pi

)

≥
1

42
.

Theorem 1.12. Let A ⊂ [0, 1] be a DCC set (so that any non-increasing
sequence ai ∈ A is eventually constant). Then

V := {2g − 2 +
∑

di|g ∈ Z≥0, di ∈ A} ∩ (0, 1]

is a DCC set and in particular there is a minimal element v0 ∈ V.
If A = {1− 1

m |m ∈ Z>0}, then v0 = 1
42 .

The proof is elementary, but we recall it for the convenience of the reader.

Proof. We may assume that g ∈ {0, 1}. It is easy to see that the set A+ =
{
∑

ai|ai ∈ A} ∩ [0, 1] is also a DCC set and hence so is V.
If A = {1 − 1

m |m ∈ Z>0} then v0 =
∑

ai + 2g − 2 where g ∈ {0, 1} and
ai = 1− 1

ni
for some ni ∈ Z>0. If g = 0, a1 = 1− 1

2 , a2 = 1− 1
3 and a3 = 1− 1

7 ,

then v0 = 1
42 .
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If g = 1, then
∑

ai ≥ 1
2 . Therefore, we may assume that g = 0. In this

case v0 =
∑t

i=1 ai − 2. Since 1 ≥ ai = 1 − 1
ni

≥ 1
2 , we may assume t ∈ {3, 4}.

Let 2 ≤ n1 ≤ n2 ≤ .... If t = 4, then as v0 > 0, we have n4 ≥ 3 and hence
v0 = 2 −

∑

1
ni

≥ 1
6 . If t = 3, then v0 = 1 −

∑

1
ni
. If n1 > 3, then v0 ≥ 1

4 . If

n1 = 3, as v0 > 0, we have n3 ≥ 4 and hence v0 ≥ 1
12 . If n1 = 2 and n2 ≥ 5,

then v0 ≥ 1
10 . If n1 = 2 and n2 = 4, then as v0 > 0, n3 ≥ 5 and so v0 ≥ 1

20 .
If n1 = 2 and n2 = 3, then as v0 > 0, n3 ≥ 7 and so v0 ≥ 1

42 . Finally, if
n1 = n2 = 2, then v0 < 0.

One expects results similar to (1.11) to hold for automorphism groups of
varieties of general type (regardless of their dimension). Results in this direction
will be discussed in Section 3.1.

Another reason to be interested in pluricanonical maps for varieties of log
general type is that they naturally arise when studying moduli spaces of canon-
ically polarized varieties of general type cf. Section 3.3 and open varieties cf.
Section 3.4.

At the opposite end of the spectrum, we have varieties with κ(X) < 0. ¿From
the point of view of the minimal model program, the typical representatives of
this class of varieties are Fano varieties. For these varieties we have that ω∨

X

is ample. Therefore, we consider the maps induced by sections of ω⊗m
X for

m ∈ Z<0. The geometry of Fano varieties is briefly discussed in Section 3.5.

2. Varieties of General Type

In this section we will explain the main ideas behind the proof of (1.7). Our
goal is to show that if X is an n-dimensional projective variety of general type,
then φr is birational for all r � rn. To this end, it suffices then to show that
there exists a subset X0 ⊂ X given by the complement of countably many
closed subsets of X such that φr is defined at points of X0 and φr separates
any two distinct points x, y ∈ X0. The first major reduction in the proof of
(1.7) is to show the following.

Proposition 2.1. In order to prove (1.7) it suffices to show that there exist
positive constants A and B (depending only on n) such that for any integer

r ≥
A

vol(ωX)1/n
+B,

the rational map φr is birational.

Proof. If vol(ωX) ≥ 1, then the assertion is clear as φr is birational for all
r ≥ A+B. We may therefore assume that vol(ωX) < 1. Let r0 be the smallest
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integer such that φr0 is birational, then

1 ≤ deg φr0(X) ≤ vol(ω⊗r0
X ) = rn0 vol(ωX) ≤

(

A

vol(ωX)1/n
+B + 1

)n

vol(ωX) < (A+B + 1)n.

It follows that the degree of the closure of φr0(X) is bounded. Therefore, by
a Hilbert scheme type argument, there is a projective morphism of quasi-
projective varieties f : X → S such that if X is any smooth n-dimensional
complex projective variety with 0 < vol(ωX) < 1, then there exists a point
s ∈ S such that X is birational to the fiber Xs. By Noetherian induction, pos-
sibly replacing S by a union of locally closed subsets, we may assume that f is
smooth and S is irreducible. Let η = Spec(K) be the generic point of S and XK

be the generic fiber. Then there exists rη such that φω⊗r
XK

is birational for all

rη ≤ r ≤ 2rη (and hence for all r ≥ rη). It then follows that there exists an open
subset S0 of S such that φω⊗r

Xt

is birational for all t ∈ S0 and all rη ≤ r ≤ 2rη

(and hence for all r ≥ rη).
By Noetherian induction, there is an integer rS such that φω⊗r

Xt

is birational

for all t ∈ S and all r ≥ rS .

Remark 2.2. By the above discussion, (1.7) implies that for any n ∈ Z>0,
there exist a positive constant vn > 0 such that if X is a projective variety of
general type and dimX = n, then vol(ωX) ≥ vn.

In order to show that a rational map φr is birational, we would like to
imitate the proof of the curve case of this theorem cf. (1.1) and show that the
evaluation map

H0(X,ω⊗r
X ) → Cx ⊕ Cy

at very general points x, y ∈ X is surjective. The problem is that in higher
dimensions it is very hard to ensure that cohomology groups of the form
H1(X,ω⊗r

X ⊗mx⊗my) vanish (here mx denotes the maximal ideal of x ∈ X). In
order to achieve this, the usual strategy is to use a far reaching generalization of
Kodaira vanishing known as Kawamata-Viehweg vanishing or Nadel vanishing.
Recall the following:

Theorem 2.3 (Nadel vanishing). Let X be a smooth complex projective variety,
L a line bundle on X and D a Q-divisor such that L(−D) is nef and big. Then
Hi(X,ωX ⊗ L⊗ J (D)) = 0 for all i > 0.

Remark 2.4. Recall that a line bundle is nef if deg(L|C) ≥ 0 for any curve
C ⊂ X. In this case, L is big if and only if LdimX > 0. These definitions readily
extend to Q-divisors.

Remark 2.5. Recall that if D ⊂ X is a Q-divisor, then the multiplier ideal
J (D) ⊂ OX is defined as follows. Let f : Y → X be a log resolution so that f



Boundedness Results in Birational Geometry 435

is a projective birational morphism, Y is smooth, Exc(f) and Exc(f) ∪ f−1
∗ D

are divisors with simple normal crossings support. Then

J (D) := f∗OY (KY/X − xf∗Dy).

It is well known that J (D) is trivial at points x ∈ X where multx(D) < 1
and mx ⊂ J (D) if multx(D) ≥ dimX. The interested reader can consult
[Lazarsfeld05] for a clear and comprehensive treatment of the properties of mul-
tiplier ideal sheaves.

Using Nadel vanishing we obtain the following.

Proposition 2.6. In order to prove (1.7) it suffices to show that there exists
positive constants A and B (depending only on n) such that for any two distinct
very general points x, y ∈ X there is a Q-divisor Dx,y such that

1. Dx,y ∼ λKX where λ < A
vol(ωX)1/n

+B − 1;

2. x is an isolated point of the co-support of J (Dx,y) and y is contained in
the co-support of J (Dx,y).

Proof. Let r ≥ A
vol(ωX)1/n

+B be any integer. By (2.1), it suffices to show that

φr is birational.
Since ωX is big, there exists an integer m > 0, an ample divisor H and an

effective divisor G ≥ 0 such that mKX ∼ G + H. We may assume that x, y
are not contained in the support of G. We let D′

x,y = Dx,y + r−1−λ
m G. Then

(r−1)KX−D′
x,y ∼Q

r−1−λ
m H is ample so that by (2.3)H1(X,ω⊗r

X ⊗J (D′
x,y)) =

0.
Consider the short exact sequence of coherent sheaves on X

0 → ω⊗r
X ⊗ J (D′

x,y) → ω⊗r
X → Q → 0

where Q denotes the corresponding quotient. Since, as observed above,
H1(X,ω⊗r

X ⊗ J (D′
x,y)) = 0, the homomorphism

H0(X,ω⊗r
X ) → H0(X,Q)

is surjective. Since x is an isolated point in the co-support of J (D′
x,y), Cx is

a summand of Q. Since y is also contained in the support of Q, we may find
a section s ∈ H0(X,ω⊗r

X ) vanishing at y but not at x. Since x and y are very
general points on X, by symmetry we may also find a section t ∈ H0(X,ω⊗r

X )
vanishing at x but not at y. It follows that the evaluation map

H0(X,ω⊗r
X ) → Cx ⊕ Cy

is surjective and hence φr is birational.
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Proof of Theorem 1.7. By (2.6), it suffices to show that there exists posi-
tive constants A and B (depending only on n) such that for any two dis-
tinct very general points x, y ∈ X there is a Q-divisor Dx,y ∼Q λKX where
λ < A

vol(ωX)1/n
+ B − 1 such that x is an isolated point of the co-support of

J (Dx,y) and y is contained in the co-support of J (Dx,y).
For ease of exposition, we will however just show that there is a Q-divisor

Dx ∼Q λKX where λ < A
vol(ωX)1/n

+ B − 1 such that x is an isolated point

of the co-support of J (Dx). The interested reader can consult [Tsuji07] or
[Takayama06] for the remaining details or [HM06] for an alternative argument.

We will also assume that ωX is ample. This can be achieved replacing X by
its canonical model. Of courseX is no longer smooth, but it has mild (canonical)
singularities and the proof goes through with minor changes.

We will proceed by induction on the dimension and hence we may assume
that (1.7) holds for varieties of dimension ≤ n− 1. Note that by (1.1), the the-
orem holds when n = 1. We will not keep careful track of the various constants
and so we will say that λ = O(vol(ωX)−1/n) (instead of λ < A

vol(ωX)1/n
+B−1).

Since

h0(OX(mKX)) =
vol(ωX)

n!
mn +O(mn−1)

and since vanishing to order k at a smooth point x ∈ X imposes at most
kn/n! + O(kn−1) conditions, by an easy calculation it follows that for any
smooth point x ∈ X, we may find m � 0 and a Q-divisor Dm

x ∼ mKX such
that multx(D

m
x ) > m

2 vol(ωX)1/n. Note that if we assume that x ∈ X is a very
general point, then we can assume that the integer m is independent of the
point x. Let τ be defined by

τ = sup{t ≥ 0|mx ⊂ J (X, tDm
x )}.

By (2.5), τ < 2n
m·vol(ωX)1/n

. Note that if Dx := τDm
x , then mx ⊂ J (X,Dx) and

Dx ∼ λKX where λ ≤ 2n
vol(ωX)1/n

so that λ = O(vol(ωX)−1/n).

By a standard perturbation technique, we may assume that on a neigh-
borhood of x ∈ X there is a unique irreducible subvariety Vx contained in
the co-support of J (Dx). (More precisely, if f : Y → X is a log resolution
of (X,Dx), we may assume that there is a unique divisor E ⊂ Y such that
multE(KY/X − f∗Dx) = −1 and E ∩ f−1(x) 6= ∅. Vx is then the center of E
on X.) The problem is that we may have dimVx > 0. The idea is to then use
the techniques of [AS95] to “cut down” the cosupport of J (Dx) i.e. to reduce
to the case when dimVx = 0. We will use the following result:

Proposition 2.7. Let Vx and (X,Dx) be as above. If for a general point x′ ∈ Vx

there exists a divisor Fx′ on X whose support does not contain Vx such that
multx′(Fx′ |Vx

) > dimVx, then there exist rational numbers 0 < α, β < 1 such
that mx′ ⊂ J (αDx + βFx′) and in a neighborhood of x′, every component of
the co-support of J (αDx + βFx′) has dimension less than dimVx.
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The established strategy to produce the Q-divisor Fx′ is as follows:

1. produce a divisor Ex′ on Vx such that multx′(Ex′) > dimVx, and then

2. lift this divisor to X, that is find a Q-divisor Fx′ ∼Q λ′KX such that
Fx′ |Vx

= Ex′ and λ′ = O(vol(ωX)−1/n).

In order to complete the first step, we need to bound the volume of ωX |Vx

from below. This is achieved by comparing KX +Dx with KVx
via a result of

Kawamata (cf. [Kawamata98]):

Theorem 2.8. Let Vx and (X,Dx) be as above, and let A be an ample divisor.
If ν : V ν

x → Vx is the normalization, then for any rational number ε > 0, there
exists a Q-divisor ∆ε ≥ 0 such that

ν∗(KX +Dx + εA) ∼Q KV ν
x
+∆ε.

Remark 2.9. Kawamata’s Subadjunction Theorem says that if moreover Vx is
a minimal non-klt center at a point y ∈ Vx, then (on a neighborhood of y) V is
normal and we may assume that (Vx,∆ε) is klt.

Since X is of general type and x ∈ X is a very general point, it follows
that Vx is also of general type. Let n′ = dimVx and µ : Ṽx → V ν

x be a resolu-
tion of singularities. Assume for simplicity that Vx is normal. By our inductive
hypothesis, for general x′ ∈ Ṽx there is a Q-divisor Ex′ ∼Q γKṼx

on Ṽx with
multx′(Ex′) > n′ and 0 < γ < n/vn′ so that γ = O(1) (for the definition of vn′

see (2.2)). Fix a rational number 0 < ε � 1 and let A = KX . Pushing forward,
we obtain a Q-divisor

ν∗(µ∗Ex′ + γ∆ε) ∼Q γν∗(KV ν
x
+∆ε) ∼Q γ(1 + λ+ ε)KX |Vx

on Vx with multx′ν∗(µ∗Ex′ + γ∆ε) > n′.
Since we have assumed that KX is ample, by Serre vanishing, the homo-

morphism
H0(X,OX(mKX)) → H0(X,OVx

(mKX))

is surjective for all m � 0 and so there exists a Q-divisor Fx′ ∼Q γ(1+λ+ε)KX

such that Fx′ |Vx
= ν∗(µ∗Ex′ + γ∆ε).

By (2.7), we then have that for some 0 < α, β < 1

1. mx′ ⊂ J (αDx + βFx′),

2. in a neighborhood of x′, every component of the co-support of J (αDx +
βFx′) has dimension < dimVx, and

3. αDx + βFx′ ∼Q λ′KX where λ′ = O(vol(ωX)−1/n).

Repeating this procedure at most n−1 times, we may assume that for any very
general point x∗ ∈ X, there is a Q-divisor D∗

x∗ ∼Q λ∗KX such that x∗ is an
isolated point in the co-support of J (D∗

x∗) and λ∗ = O(vol(ωX)−1/n).
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2.1. Reid’s 3-fold exact plurigenera formula. In dimension 3,
an almost optimal version of (1.7) can be obtained using Reid’s 3-fold exact
plurigenera formula.

Theorem 2.10. Let X be a minimal 3-fold with terminal singularities, then

χ(OX(mKX)) =
1

12
m(m− 1)(2m− 1)K3

X − (2m− 1)χ(OX) + l(m),

where the correction term l(m) depends only on the (finitely many) singularities
of X. More precisely, there is a finite set (basket) of pairs of integers B(X) =
{(bi, ri)} where 0 < bi < ri are uniquely determined by the singularities of X
such that

l(m) :=
∑

Qi∈B(X)

lQi
(m) :=

∑

Qi∈B(X)

m−1
∑

j=1

jbi(ri − jbi)

2ri
,

where x denotes the smallest non-negative residue modulo ri, so that, x :=
x− rib

x
ri
c.

When X is of general type, KX is nef and big so that by Kawamata-Viehweg
vanishing we have

Pm(X) := h0(OX(mKX)) = χ(OX(mKX)) for all m ≥ 2.

One can therefore hope to use (2.10) to find values of m such that Pm(X) ≥ 1
or Pm(X) ≥ 2. If, for example χ(OX) ≤ 0, then since l(m) ≥ 0 and K3

X > 0,
we have Pm(X) ≥ 1 for all m ≥ 2.

More generally, it is not hard to see that if Pm(X) = 0 for some m ≥ 2 and
if −χ(OX) is bounded from below, then there are only finitely many possible
baskets of singularities B(X). This implies that the index r of KX (i.e. the
smallest integer r > 0 such that rKX is Cartier) is bounded from above. In
turn this means that K3

X ≥ 1
r3 and hence one obtains an integer m0 such that

Pm(X) ≥ 1 for all m ≥ m0.

By a detailed study of the above Riemann-Roch formula, J.-A. Chen and
M. Chen prove the following (cf. [CC08]).

Theorem 2.11. Let X be a non-singular 3-fold of general type then

1. vol(ωX) ≥ 1
2660 ,

2. P12(X) ≥ 1,

3. P24(X) ≥ 2, and

4. φr is birational for all r ≥ 77.
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Remark 2.12. The second and third inequalities are optimal.
There exist examples with vol(ωX) = 1

420 (cf. [Iano-Fletcher00]) and hence
the first inequality is “almost optimal”. By [CC08b], it is known that if
χ(OX) ≤ 0, then vol(ωX) ≥ 1

30 . This inequality is optimal as shown by the ex-
ample of a canonical hypersurface of degree 28 in the weighted projective space
P(1, 3, 4, 5, 14).

When χ(OX) = 1, it is known that vol(ωX) ≥ 1
420 (cf. [Zhu09b]) and that

φr is birational for all r ≥ 46 (cf. [Zhu09a]).
As mentioned in the introduction, there are examples where φ26 is not bira-

tional and so the fourth inequality is also “almost optimal”.

Remark 2.13. Using similar methods, in [CC08c] it is shown that if X is a ter-
minal weak Q-Fano 3-fold (so that −KX is nef and big), then h0(OX(−6KX)) >
0, h0(OX(−8KX)) > 1 and −K3

X ≥ 1
330 (which is the optimal possible lower

bound).

As mentioned above, the idea of using Reid’s exact plurigenera formula
in this context is not new (see for example [Iano-Fletcher00]). The main new
insight of [CC08] is to use (2.10) for various values of m to prove the following
inequality:

2P5 + 3P6 + P8 + P10 + P12 ≥ χ(OX) + 10P2 + 4P3 + P7 + P11 + P13.

It follows that if Pm = 0 for m ≤ 12, then χ(OX) ≤ 0 which as observed above
is the well understood case.

The precise results obtained in [CC08] are then a consequence of a detailed
study of the terms appearing in Reid’s exact plurigenera formula.

3. Varieties of Log General Type

One would like to generalize Theorem 1.7 to the case of log canonical pairs.
This is a natural question in its own right, but it is also motivated by the desire
to study the geometry of open varieties, of varieties of intermediate Kodaira di-
mension, of the moduli spaces of varieties of general type, of the automorphism
groups of varieties of general type and other related questions.

We start by considering the case of curves. Let (X,D) be a pair consisting of
a smooth curve X and a Q-divisor D =

∑

diDi such that KX +D has general
type. We ask the following:

Question 3.1. Is there a lower bound for the volume of KX +D?

The answer in this case is simple:

vol(KX +D) = deg(KX +D) = 2g − 2 +
∑

di > 0

where g denotes the genus of the curve X. If g ≥ 2, then vol(KX + D) ≥ 2,
but if g ≤ 1, one sees immediately that no such bound exists unless we impose
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some restrictions on the possible values that di are allowed to take. The most
natural answer was given in (1.12): If A ⊂ [0, 1] is a DCC set, then there exists
a constant v0 > 0 such that 2g − 2 +

∑

di ≥ v0 for any g ∈ Z≥0 and di ∈ A.
The most optimistic generalizations of Theorem 1.12 are the following two

conjectures.

Conjecture 3.2. Let A ⊂ (0, 1] be a DCC set, n ∈ Z>0 and

V = {vol(KX +D)|(X,D) is lc, dimX = n, D ∈ A}.

Then V is a DCC set.

Conjecture 3.3. Let A ⊂ (0, 1] be a DCC set and n ∈ Z>0. Then there exists
a positive integer N > 0 such that if (X,D) is a lc pair of dimension n with
KX +D big and D ∈ A, then |xm(KX +D)y| is birational for all m ≥ N .

Notice that the above conjectures were proven in dimension 2 by Alexeev
and Alexeev-Mori (cf. [Alexeev94] and [AM04]).

At first sight one may hope to apply the techniques used in the proof of
Theorem 1.7, however there are several problems that arise:

It is easy to produce a divisor Dx ∼Q k(KX +D) such that mx ⊂ J (Dx)
for very general x ∈ X and k = O(vol(KX + D)1/n). Assume for simplicity
that there is an irreducible subvariety Vx ⊂ X such that J (Dx) = IVx

on a
neighborhood of x ∈ X. If dimVx > 0, we must bound vol((KX +D)|Vx

) from
below. To this end, one applies Kawamata sub-adjunction

ν∗(KX +Dx + εA) = KV ν
x
+∆ε

where ν : V ν
x → Vx is the normalization morphism, A is an ample line bundle

and 0 < ε � 1.
In order to proceed by induction on the dimension, we must show thatKV ν

x
+

∆ε satisfies the inductive hypothesis. This is problematic. Even if we ignore the
dependence on ε (which is at least conjecturally a reasonable assumption), in
order to control the coefficients of ∆ε, we must control the coefficients of Dx.
In higher dimension, there is no known strategy to accomplish this.

3.1. Automorphism groups of varieties of general type. Let
X be a variety of general type with automorphism group G, then it is known
that G is finite. It is a natural question to find effective bounds on the order of
G.

Naturally, one would hope to generalize Hurwitz’s Theorem cf. (1.11) to
higher dimensions. The natural conjecture is:

Conjecture 3.4. For any n ∈ Z>0, there exists a constant C > 0 (depending
only on n) such that if X is an n-dimensional variety of general type with
automorphism group G, then

|G| ≤ C · vol(ωX).
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Over the years there has been much interest in results related to the above
conjecture; see for example [Andreotti50], [Corti91], [HS91], [Xiao94], [Xiao95],
[Xiao96], [Szabo96], [CS96], [Ballico93] and [Cai00].

One would hope to use the ideas in the proof of (1.11) to attack Conjecture
3.4 in higher dimensions. We can still write

KX = f∗

(

KY +
∑

(1−
1

ni
)Pi

)

where f : X → Y = X/G is the induced morphism and ni is the order of
ramification of f over Pi. We also have

vol(ωX) = |G| · vol

(

KY +
∑

(1−
1

ni
)Pi

)

.

Therefore, a positive answer to Conjecture 3.2, would imply a positive answer
to Conjecture 3.4.

Remark 3.5. It is likely that proving that vol(KY +
∑

(1− 1
ni
)Pi) is bounded

from below, is substantially easier than Conjecture 3.2, and that this problem is
even more accessible when (Y,

∑

(1− 1
ni
)Pi) arises as the quotient of a variety

of general type by its automorphism group.

3.2. Varieties of intermediate Kodaira dimension. Let X be
a smooth projective variety of Kodaira dimension 0 ≤ κ(X) < dimX, then it
is known that for all m > 0 sufficiently divisible φm : X → Z defines a map
birational to the Iitaka fibration so that dimZ = κ(X) and κ(F ) = 0 where F is
a general fiber of φm. (In fact Z is birational to ProjR(KX).) When κ(X) = 0,
Z = Spec(k) and there is an integer N > 0 such that Pm(X) > 0 if and only if
m is divisible by N .

It is natural to conjecture the following:

Conjecture 3.6. Fix positive integers 0 ≤ κ < n. Then there exists an integer
N > 0 (depending only on κ and n) such that if X is a smooth projective variety
of dimension n and Kodaira dimension κ, and m > 0 is an integer divisible by
N , then φN is birational to the Iitaka fibration.

For surfaces, this conjecture is known to be true. In fact we have the fol-
lowing:

1. If κ(X) = 0 then P12(X) > 0, and

2. if κ(X) = 1, then P12(X) > 0 and Pm(X) > 1 for some m ≤ 42.

In dimension 3 the following results are known:

1. If κ(X) = 0 then by [Kawamata86] and [Morrison86]

P25·33·52·7·11·13·17·19(X) > 0;
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2. if κ(X) = 1, then by [FM00] there exists an explicit constant N > 0
(presumably far from optimal) such that φm is birational to the Iitaka
fibration for all m > 0 divisible by N ; and

3. if κ(X) = 2, then by [VZ09] and [Ringler07], there exists an explicit
constant N > 0 such that φm is birational to the Iitaka fibration for all
m > 0 divisible by N (in fact m ≥ 48 and divisible by 12 suffices).

We now outline a strategy for proving Conjecture (3.6). Let X be a smooth
projective variety of dimension n and Kodaira dimension κ ≥ 0.

Step 1. By the minimal model program, it is expected that there is a minimal
model φ : X 99K X ′ (given by a finite sequence of flips and divisorial contrac-
tions) such that R(KX) ∼= R(KX′), X ′ has terminal singularities and KX′ is
semiample. This means that for some m0 > 0, the linear series |m0KX′ | is base
point free and it defines a morphism f ′ : X ′ → Z ′ which is birational to the
Iitaka fibration of X. In particular dimZ = κ and κ(F ′) = 0 where F ′ is a
very general fiber of f ′. In fact we have KF ′ ∼Q 0. Note this step requires the
abundance conjecture.

Step 2. Using the ideas of Fujino and Mori [FM00], we write the “canonical
bundle formula”

KX′ ∼Q f ′∗(KZ +B +M)

where the “boundary” partB is determined by the singularities of the morphism
f ′ and the “moduli” part M is determined by the variation in moduli of the
general fiber F ′.

When f ′ is an elliptic fibration, then M = 1
12j

∗OP1(1) where j : Z → P1 is
the j-function. In general, one expects M to be the pull-back of a big semiample
Q-divisor on a moduli scheme.

In order to make use of Fujino-Mori’s canonical bundle formula, it is impor-
tant to bound the denominators of the Q-divisors B and M .

By [FM00, 3.1], there exists a positive integer k = k(b,Bm) > 0 such that
kM is a divisor, where b is the smallest positive integer such that Pb(F

′) > 0,
m = n − κ and Bm is the m-th Betti number of a desingularization of the
Zm-cover E → F ′ determined by the divisor in |bKF ′ |. In fact we have k =
lcm{y ∈ Z>0|φ(y) ≤ Bm} where φ is Euler’s function.

The boundary part, B is defined as follows: Let P be a codimension 1 point
on Z and let bP be the supremum of b ≥ 0 such that (X, bf∗P ) is log canonical
over the general point of P . We then set B =

∑

(1 − bP )P . Note that bP = 1
for all but finitely many codimension 1 points P on Z. An interesting feature
is that the coefficients of bp are of the form b− v

ku where 0 < v ≤ bk cf. [FM00,
2.8].

The upshot is that if we control the invariants b and Bm of the general fiber
F ′, then we can bound the denominators of B and M .

Step 3. Apply Conjecture (3.3) to conclude.
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Remark 3.7. Note that Step 2 depends on bounding k independently of the
general fiber F ′. If m = 1 then F ′ is a curve of genus 1 and hence b = 1
and B1 = 2. If m = 2, then F is either an abelian, a K3, and Enriques or
a bielliptic surface. As mentioned above, we have b ≤ 12. Let E → F ′ be the
corresponding cover. We again have κ(E) = 0 and hence B2(E) ≤ 24. If m = 3,
by Kawamata’s result mentioned above, there is a known bound for b, but there
is no known bound for B3. In higher dimensions, these questions are completely
open.

Remark 3.8. One may make the analogous conjecture for log pairs. The case
when dimX ≤ 3 and κ(KX + ∆) = dimX − 1 is treated in [Todorov08]. The
case where dimX ≤ 4 and κ(KX +∆) = dimX − 2 is treated in [TX08].

3.3. Moduli spaces of varieties of general type. As we have
remarked above, boundedness of varieties of general type is an essential ingre-
dient in the proof of the existence of a moduli space for canonically polarized
varieties of general type.

Recall that if X is a projective variety of general type, then its canonical
model Xcan is defined by Xcan := ProjR(KX). Xcan has canonical singularities
(in particular KXcan

is Q-Cartier and R(KXcan
) ∼= R(KX)) and KXcan

is ample.
As a consequence of (1.7), we have:

Theorem 3.9. For every n, v ∈ Z>0 then there exists a projective morphism
of normal quasi-projective varieties f : X → B such that any fiber Xb is a
canonically polarized variety of general type with canonical singularities, and if
X is a canonically polarized variety of general type with canonical singularities
and vol(ωX) ≤ v, then there exists b ∈ B such that X ∼= Xb.

Idea of the proof. By (1.7) and its proof, there exists a projective morphism of
normal quasi-projective varieties f : Z → B such that for any X as above,
there exists b ∈ B such that Zb is birational to X. Note that

X ∼= ProjR(KX) ∼= ProjR(KYb
)

where Yb → Zb is any log resolution.

We may assume that B is irreducible. Let η = Spec(K) be its generic point
and Yη → Zη be a log resolution. By [BCHM09], it follows that R(KYη

) is
finitely generated. We may therefore pick an integer N > 0 such that R(NKYη

)
is generated in degree 1. There is an open subset B0 ⊂ B such that R(NKY0) is
generated over B0 in degree 1 where Y0 = Y ×B B0. By Noetherian induction,
we may assume that R(NKY) is generated over B in degree 1. Replacing Y
by an appropriate resolution, we may assume that |NKY | defines a morphism
φN : Y → X ∼= ProjBR(KY). We then have

X ∼= ProjR(KYb
) ∼= ProjR(KX).
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Ideally, one would like to construct proper moduli spaces for varieties of
general type. In order to do this, it is necessary to allow certain degenerations
of these varieties. For example in dimension 1 it is necessary to consider stable
curves and in higher dimensions we must consider semi-log canonical varieties
i.e. varieties X such that

1. X is reduced and S2,

2. KX is Q-Cartier, and

3. if f : X̃ → X is a semiresolution of singularities, then KX̃ ≡ f∗KX +
∑

aiEi where ai ≥ −1.

This is the generalization of log canonical singularities to the non-normal situ-
ation.

If we let ν : Xν → X be the normalization, then Xν =
∐

i=1,...,m Xi and we
may write KXi

+ ∆i = (ν∗KX)|Xi
where (Xi,∆i) is a log canonical pair and

∆i is a reduced divisor.
If we are to construct proper moduli spaces, it is therefore important to

prove the boundedness of n-dimensional canonically polarized semi log canon-
ical varieties X with fixed volume Kn

X = M .
The first step is provided by an affirmative answer to Conjecture 3.2: Since

Kn
X =

∑

i=1,...,m(KXi
+ ∆i)

n and since by (3.2) the numbers (KXi
+ ∆i)

n

belong to a DCC set V, then there exists a positive constant v > 0 such that
(KXi

+∆i)
n ≥ v for all i. In particular there is an upper bound for the number

of irreducible components of X i.e. m ≤ M/v. Moreover, by (3.3) and arguing
as in the proof of (3.9), one expects that the pairs (Xi,∆i) (and hence the
variety X) belong to a bounded family.

3.4. Open varieties. Let X be a smooth quasi-projective variety, and
consider X̄ a smooth projective variety such that X = X̄ − F where F is a
simple normal crossing divisor on X̄.

The geometry of X is then studied in terms of the rational maps defined
by H0(ω⊗m

X̄
(mF )) for m > 0. Note these maps are independent of the chosen

compactification X̄ of X. Conjectures 3.2 and 3.3 would allow us to generalize
(1.7) to this context.

3.5. Fano varieties. A terminal Fano variety X is a normal projective
variety with terminal singularities such that −KX is ample. (We have similar
definitions for canonical singularities, log terminal singularities, etc.) These
varieties naturally arise in the context of the minimal model program, which
predicts that if Y is a variety with κ(Y ) < 0, then there is a finite sequence
of flips and divisorial contractions Y 99K Y ′ and a projective morphism f :
Y ′ → Z whose general fiber is a terminal Fano variety (of dimension > 0).
Therefore, one can think of terminal Fano varieties with Picard number one
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as the building blocks for smooth projective varieties with negative Kodaira
dimension κ(Y ) < 0.

If dimX = 1, there is only one terminal Fano variety: the projective line
P1. If dimX = 2, terminal Fano varieties are known as Del Pezzo surfaces (a
terminal surface is necessarily smooth). There are ten families of such surfaces.
In higher dimensions, one expects a similar result to hold. The following funda-
mental result (cf. [Nadel90], [Nadel91], [Campana91], [Campana92], [KMM92a],
[KMM92b]) shows that at least for smooth Fano varieties, this is the case:

Theorem 3.10. Let n ∈ Z>0. Then there are only finitely many families of
n-dimensional smooth projective Fano varieties.

The proof of this Theorem is based on the study of the properties of rational
curves on these manifolds. When X has singularities, then the behavior of ra-
tional curves on X is more subtle. Nevertheless we have the following conjecture
known as the BAB (or Borisov-Alexeev-Borisov) Conjecture.

Conjecture 3.11. Let n ∈ Z>0. Then there are only finitely many families of
canonical Q-factorial Fano varieties.

Remark 3.12. The above conjecture is already interesting for Fano varieties
of Picard number 1.

One also expects a similar conjecture for ε-log terminal Fano varieties (not
necessarily Q-factorial with arbitrary Picard number). Recall that if ε > 0, then
X is ε-log terminal if for any log resolution f : X ′ → X, we have KX′ =
f∗KX +

∑

aiEi where ai > ε− 1. The example of cones over a rational curve
of degree n show that the ε-log terminal condition is indeed necessary.

Conjecture 3.11 is known for canonical Fano varieties of dimension ≤ 3
(in characteristic zero) of arbitrary Picard number cf. [Kawamata92] and
[KMMT00]; for toric varieties [BB92] and for spherical varieties [AB04].

A positive answer to Conjecture 3.11 would have profound implications on
the birational geometry of higher dimensional projective varieties. In particular
(3.11) is related to the famous conjectures on the ACC for mld’s, the ACC for
log canonical thresholds and the termination of flips.

The techniques for the study of varieties of positive Kodaira dimension
(that we have described above) do not readily apply to this context. However
we would like to mention [McKernan03] for a related approach and [HM10b]
for one possible connection showing that it is possible that results for varieties
of log general type may be useful in the study of log-Fano varieties.

References

[Alexeev94] V. Alexeev, Boundedness and K2 for log surfaces. Internat. J. Math.
5 (1994), no. 6, 779–810.



446 Christopher D. Hacon and James McKernan

[AB04] V. Alexeev and M. Brion, Boundedness of spherical Fano varieties.
The Fano Conference, 69–80, Univ. Torino, Turin, 2004.

[AM04] V. Alexeev and S. Mori, Bounding singular surfaces of general
type. Algebra, arithmetic and geometry with applications (West
Lafayette, IN, 2000), 143–174, Springer, Berlin, 2004.

[Andreotti50] A. Andreotti, Sopra le superficie algebriche che posseggono trasfor-
mazioni birazionali in se. (Italian) Univ. Roma Ist. Naz. Alta Mat.
Rend. Mat. e Appl. (5) 9, (1950). 255–279.

[AS95] U. Angehrn and Y.-T. Siu, Effective freeness and point separation
for adjoint bundles. Invent. Math. 122 (1995), no. 2, 291–308.

[Ballico93] E. Ballico, On the automorphisms of surfaces of general type in
positive characteristic, Rend. Mat. Acc. Lincei (9) 4 (1993) 121–
129.

[Benveniste86] X. Benveniste, Sur les applications pluricanoniques des variétés de
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