Chapter 3: Linear Differential Equations and Applications

Chapter 3. Sample Problem 5. Vertical Motion Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted to an earthquake. It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes with the attached stylus onto a rotating drum, as the ground moves up. The generated trace is $x(t)$.

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass system with damping. The initial model has the form

$$
m x^{\prime \prime}+c x^{\prime}+k x=f(t)
$$

where $f(t)$ is the vertical ground force due to the earthquake. In terms of the vertical ground motion $u(t)$, we write via Newton's second law the force equation $f(t)=-m u^{\prime \prime}(t)$ (compare to falling body $-m g$). The final model for the motion of the mass is then

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+2 \beta \Omega_{0} x^{\prime}(t)+\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t) \tag{1}\\
\frac{c}{m}=2 \beta \Omega_{0}, \quad \frac{k}{m}=\Omega_{0}^{2} \\
x(t)=\text { center of mass position measured from equilibrium } \\
u(t)=\text { vertical ground motion due to the earthquake. }
\end{array}\right.
$$

Terms seismoscope, seismograph, seismometer refer to the device in the figure. Some observations:

Slow ground movement means $x^{\prime} \approx 0$ and $x^{\prime \prime} \approx 0$, then (1) implies $\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t)$. The seismometer records ground acceleration.

Fast ground movement means $x \approx 0$ and $x^{\prime} \approx 0$, then (1) implies $x^{\prime \prime}(t)=-u^{\prime \prime}(t)$. The seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right)$ are recorded. This experiment determines constants β, Ω_{0}.

The objective of (1) is to determine $u(t)$, by knowing $x(t)$ from the seismograph.

The Problem.

(a) Explain how a release test can find values for β, Ω_{0} in the model $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$.
(b) Assume the seismograph trace can be modeled at time $t=0$ (a time after the earthquake struck) by $x(t)=C e^{-a t} \sin (b t)$ for some positive constants C, a, b. Assume a release test determined $2 \beta \Omega_{0}=12$ and $\Omega_{0}^{2}=100$. Explain how to find a formula for the ground motion $u(t)$, then provide a formula for $u(t)$, using technology.

Solution to the Seismoscope Problem.

(a) A release test is an experiment which provides initial data $x(0)>0, x^{\prime}(0)=0$ to the seismoscope mass. The model is $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$ (ground motion zero). The recorder graphs $x(t)$ during the experiment, until two successive maxima $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right)$ appear in the graph. This is enough information to find values for β, Ω_{0}.
In an under-damped oscillation, the characteristic equation is $(r+p)^{2}+\omega^{2}=0$ corresponding to complex conjugate roots $-p \pm \omega i$. The phase-amplitude form is $x(t)=C e^{-p t} \cos (\omega t-\alpha)$, with period $2 \pi / \omega$.
The equation $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$ has characteristic equation $(r+\beta)^{2}+\Omega_{0}^{2}=0$. Therefore $x(t)=C e^{-\beta t} \cos \left(\Omega_{0} t-\alpha\right)$.
The period is $t_{2}-t_{1}=2 \pi / \Omega_{0}$. Therefore, Ω_{0} is known. The maxima occur when the cosine factor is 1 , therefore

$$
\frac{x_{2}}{x_{1}}=\frac{C e^{-\beta t_{2}} \cdot 1}{C e^{-\beta t_{1}} \cdot 1}=e^{-\beta\left(t_{2}-t_{1}\right)} .
$$

This equation determines β.
(b) The equation $-u^{\prime \prime}(t)=x^{\prime \prime}(t)+2 \beta \Omega_{0} x^{\prime}(t)+\Omega_{0}^{2} x(t)$ (the model written backwards) determines $u(t)$ in terms of $x(t)$. If $x(t)$ is known, then this is a quadrature equation for the ground motion $u(t)$.
For the example $x(t)=C e^{-a t} \sin (b t), 2 \beta \Omega_{0}=12, \Omega_{0}^{2}=100$, then the quadrature equation is

$$
-u^{\prime \prime}(t)=x^{\prime \prime}(t)+12 x^{\prime}(t)+100 x(t)
$$

After substitution of $x(t)$, the equation becomes
$-u^{\prime \prime}(t)=C \mathrm{e}^{-a t}\left(\sin (b t) a^{2}-\sin (b t) b^{2}-2 \cos (b t) a b-12 \sin (b t) a+12 \cos (b t) b+100 \sin (b t)\right)$
which can be integrated twice using Maple, for simplicity. All integration constants will be assumed zero. The answer:

$$
\begin{aligned}
u(t)= & \frac{C \mathrm{e}^{-a t}\left(12 a^{2} b+12 b^{3}-200 a b\right) \cos (b t)}{\left(a^{2}+b^{2}\right)^{2}} \\
& -\frac{C \mathrm{e}^{-a t}\left(a^{4}+2 a^{2} b^{2}+b^{4}-12 a^{3}-12 a b^{2}+100 a^{2}-100 b^{2}\right) \sin (b t)}{\left(a^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

The Maple session has this brief input:

```
de:=-diff(u(t),t,t) = diff(x(t),t,t) + 12*diff(x(t),t) + 100* x(t);
x:=t->C*exp(-a*t)*sin(b*t);
dsolve(de,u(t)); subs(_C1=0,_C2=0,%);
```

Chapter 3. Sample Problem 6. Resistive Network with 2 Loops and DC Sources.

The Branch Current Method can be used to find a 3×3 linear system for the branch currents I_{1}, I_{2}, I_{3}.

$$
\begin{array}{rlrl}
I_{1}-I_{2}-I_{3} & =0 & & \text { KCL, upper node } \\
4 I_{1}+2 I_{2} & & =28 & \\
\text { KVL, left loop } \\
2 I_{2}-I_{3} & =7 & & \text { KVL, right loop }
\end{array}
$$

Symbol KCL means Kirchhoff's Current Law, which says the algebraic sum of the currents at a node is zero. Symbol KVL means Kirchhoff's Voltage Law, which says the algebraic sum of the voltage drops around a closed loop is zero.
(a) Solve the equations to verify the currents reported in the figure: $I_{1}=5, I_{2}=4, I_{3}=1$ Amperes.
(b) Compute the voltage drops across resistors R_{1}, R_{2}, R_{3}. Answer: $20,8,1$ volts.

References. Edwards-Penney 3.7, electric circuits. All About Circuits Volume I - DC, by T. Kuphaldt:
http://www.allaboutcircuits.com/.
Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf
Solved examples of electrical networks can be found in the lecture notes of Ruye Wang:
http://fourier.eng.hmc.edu/e84/lectures/ch2/node2.html.

Solutions to Problem 6

Part (a). Write the system as a matrix equation $A \vec{x}=\vec{b}$. Solve for \vec{x} by any method, including technology, to get $\vec{x}=\left(\begin{array}{l}5 \\ 4 \\ 1\end{array}\right)$, whose components are currents I_{1}, I_{2}, I_{3}.
Part (b). Use Ohm's Law $V=R I$ to compute V, which is the voltage drop across resistor R. Use the answers from part (a).
Handwritten solutions to Problem 6 appear below, after the solution to Problem 7.

The Problem. Suppose $E=100 \sin (20 t), L=5 \mathrm{H}, R=250 \Omega$ and $C=0.002 \mathrm{~F}$. The model for the charge $Q(t)$ is $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$.
(a) Differentiate the charge model and substitute $I=\frac{d Q}{d t}$ to obtain the current model $5 I^{\prime \prime}+250 I^{\prime}+500 I=2000 \cos (20 t)$.
(b) Find the reactance $S=\omega L-\frac{1}{\omega C}$, where $\omega=20$ is the input frequency, the natural frequency of $E=100 \sin (20 t)$ and $E^{\prime}=2000 \cos (20 t)$.
(c) Substitute $I=A \cos (20 t)+B \sin (20 t)$ into the current model (a) and solve for $A=$ $\frac{-12}{109}, B=\frac{40}{109}$. Then the steady-state current is

$$
I(t)=A \cos (20 t)+B \sin (20 t)=\frac{-12 \cos (20 t)+40 \sin (20 t)}{109}
$$

(d) Write the answer in (c) in phase-amplitude form $I=I_{0} \sin (20 t-\delta)$ with $I_{0}>0$ and $\delta \geq 0$. Then compute the time lag δ / ω.
Answers: $I_{0}=\frac{4}{\sqrt{109}}, \delta=\arctan (3 / 10), \delta / \omega=0.01457$.

References

Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf
Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.

Solutions to Problem 7

Part (a) Start with $5 Q^{\prime \prime}+250 Q^{\prime}+500 Q=100 \sin (20 t)$. Differentiate across to get $5 Q^{\prime \prime \prime}+$ $250 Q^{\prime \prime}+500 Q^{\prime}=2000 \cos (20 t)$. Change Q^{\prime} to I.

Part (b) $S=(20)(5)-1 /(20 * 0.002)=75$
Part (c) It helps to use the differential equation $u^{\prime \prime}+400 u=0$ satisfied by both $u_{1}=\cos (20 t)$ and $u_{2}=\sin (20 t)$. Functions u_{1}, u_{2} are Euler solution atoms, hence independent. Along the solution path, we'll use $u_{1}^{\prime}=-20 \sin (20 t)=-20 u_{2}$ and $u_{2}^{\prime}=20 \cos (20 t)=20 u_{1}$. The arithmetic is simplified by dividing the equation first by 5 . We then substitute $I=A u_{1}+B u_{2}$.

$$
\begin{aligned}
& I^{\prime \prime}+50 I^{\prime}+100 I=400 \sin (20 t) \\
& A\left(u_{1}^{\prime \prime}+50 u_{1}^{\prime}+100 u_{1}\right)+B\left(u_{2}^{\prime \prime}+50 u_{2}^{\prime}+100 u_{2}\right)=400 \sin (20 t) \\
& A\left(-400 u_{1}+50\left(-20 u_{2}\right)+100 u_{1}\right)+B\left(-400 u_{2}+50\left(20 u_{1}\right)+100 u_{2}\right)=400 \sin (20 t) \\
& (-400 A+100 A+1000 B) u_{1}+(-1000 A-400 B+100 B) u_{2}=400 u_{2}
\end{aligned}
$$

By independence of u_{1}, u_{2}, coefficients of u_{1}, u_{2} on each side of the equation must match. The linear algebra property is called unique representation of linear combinations. This implies the 2×2 system of equations

$$
\begin{aligned}
-300 A+1000 B & =0 \\
-1000 A-300 B & =400 .
\end{aligned}
$$

The solution by Cramer's rule (the easiest method) is $A=-12 / 109, B=40 / 109$. Then the steady-state current is

$$
I(t)=A \cos (20 t)+B \sin (20 t)=\frac{-12 \cos (20 t)+40 \sin (20 t)}{109} .
$$

The steady-state current is defined to be the sum of those terms in the general solution of the differential equation that remain after all terms that limit to zero at $t=\infty$ have been removed. The logic is that only these terms contribute to a graphic or to a numerical calculation after enough time has passed (as $t \rightarrow \infty$).

Part (d) Let $\cos (\delta)=B / I_{0}, \sin (\delta)=-A / I_{0}, I_{0}=\sqrt{A^{2}+B^{2}}$. Use the trig identity

$$
\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b)
$$

to rearrange the current formula as follows:

$$
I(t)=A \cos (20 t)+B \sin (20 t)=I_{0}(\sin (20 t) \cos (\delta)-\sin (\delta) \cos (20 t))=I_{0} \sin (20 t-\delta) .
$$

Compute $I_{0}=\sqrt{A^{2}+B^{2}}=\frac{4}{\sqrt{109}}$. Compute $\tan (\delta)=\frac{\sin \delta}{\cos \delta}=-A / B=12 / 40$. Then $\delta=$ $\arctan (12 / 40)$ and finally $\delta / \omega=\arctan (3 / 10) / 20=0.01457$.
Another method, using Edwards-Penney Section 3.7: Compute the impedance $Z=\sqrt{R^{2}+S^{2}}=$ $\sqrt{250^{2}+75^{2}}=\sqrt{68125}=25 \sqrt{109}$ and then $I_{0}=E_{0} / Z=4 / \sqrt{109}$. The phase $\delta=\arctan (S / R)=$ $\arctan (75 / 250)=\arctan (3 / 10)$. Then the time lag is $\delta / \omega=\frac{\arctan (0.3)}{20}=0.01457$.

