Chapters 1,2: Sample Problem 7

The velocity of a crossbow arrow fired upward from the ground is given at different times in the following table.

Time t in seconds	Velocity $v(t)$ in $\mathrm{ft} / \mathrm{sec}$	Location
0.000	50	Ground
1.413	0	Maximum
2.980	-45	Near Ground Impact

(a) The velocity $v(t)$ can be approximated by a quadratic polynomial

$$
z(t)=a t^{2}+b t+c
$$

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve for them to obtain $a \approx 2.238, b \approx-38.55, c=50$.
(b) Assume a linear drag model $v^{\prime}=-32-\rho v$. Substitute the polynomial answer $v=z(t)$ of (a) into this differential equation, then substitute $t=0$ and solve for $\rho \approx 0.131$.
(c) Solve the model $w^{\prime}=-32-\rho w, w(0)=50$ to get $w(t)=-\frac{32}{\rho}+\left(50+\frac{32}{\rho}\right) e^{-\rho t}$. Substitute $\rho=0.131$. Then $w(t)=-244.2748092+294.2748092 e^{-0.131 t}$ is an exponential model for linear drag which might reproduce the crossbow data.
(d) Compare $w(t)$ and $z(t)$ in a plot. Comment on the plot and what it means. Bear in mind that $w(t)$ is an exponential model while $z(t)$ is a quadratic model. Neither of them are the true velocty $v(t)$ which produced the crossbow data.

References. Edwards-Penney sections 2.3, 3.1, 3.2. Course document on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf
Course document on Newton kinematics:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/newtonModelsDE2008.pdf

Chapters 1,2. Sample Problem 8

Consider the system of differential equations

$$
\begin{array}{rlr}
x_{1}^{\prime} & =-\frac{1}{6} x_{1} & +\frac{1}{6} x_{3}, \\
x_{2}^{\prime} & =\frac{1}{6} x_{1}-\frac{1}{3} x_{2}, \\
x_{3}^{\prime} & = & \frac{1}{3} x_{2}-\frac{1}{6} x_{3},
\end{array}
$$

for the amounts x_{1}, x_{2}, x_{3} of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C
The volumes are $60,30,60$ for A, B, C, respectively.
The steady-state salt amounts in the three tanks are found by formally setting $x_{1}^{\prime}=x_{2}^{\prime}=x_{3}^{\prime}=0$ and then solving for the symbols x_{1}, x_{2}, x_{3}. Solve the corresponding linear system of algebraic equations to obtain the answer $x_{1}=x_{3}=2 c, x_{2}=c$, which means the total amount of salt is uniformly distributed in the tanks in ratio $2: 1: 2$.
References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5. Course document on Linear algebraic equations:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/linearequDRAFT.pdf
Course document on Systems and Brine Tanks:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/systemsBrineTank.pdf

