Chapter 2. Sample Problem 5. A graphic called a phase diagram displays the behavior of all solutions of $u^{\prime}=F(u)$. A phase line diagram is an abbreviation for a direction field on the vertical axis (u-axis). It consists of equilibrium points and signs of $F(u)$ between equilibria. A phase diagram can be created solely from a phase line diagram, using just three drawing rules:

1. Solutions don't cross.
2. Equilibrium solutions are horizontal lines $u=c$. All other solutions are increasing or decreasing.
3. A solution curve can be moved rigidly left or right to create another solution curve.

Use these tools on the equation $u^{\prime}=u\left(u^{2}-4\right)$ to make a phase line diagram, and then make a phase diagram with at least 8 threaded solutions. Label the equilibria as stable, unstable, funnel, spout, node.
References. Edwards-Penney section 2.2. Course document on Stability:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/2250phaseline.pdf
Chapter 2. Sample Problem 6. An autonomous differential equation $\frac{d y}{d x}=F(x)$ with initial condition $y(0)=y_{0}$ has a formal solution

$$
y(x)=y_{0}+\int_{0}^{x} F(u) d u
$$

The integral may not be solvable by calculus methods. In this case, the integral is evaluated numerically to compute $y(x)$ or to plot a graphic. There are three basic numerical methods that apply, the rectangular rule (RECT), the trapezoidal rule (TRAP) and Simpson's rule (SIMP).
Apply the three methods for $F(x)=\sin \left(x^{2}\right)$ and $y_{0}=0$ using step size $h=0.2$ from $x=0$ to $x=1$. Then fill in the blanks in the following table. Use technology if it saves time. Lastly, compare the four data sets in a plot, using technology.

x - values	0.0	0.2	0.4	0.6	0.8	1.0
y - to 10 digits	0.0	0.0026663619	0.02129435557	0.07133622797	0.1657380596	0.3102683017
y - RECT values	0.0	0.0	0.007997866838			
y - TRAP values	0.0	\square	0.02392968750	0.07508893150		
y - SIMP values	0.0	0.002666288917	0.02129368017		0.2297554431	

References. Edwards-Penney Sections 2.4, 2.5, 2.6, because methods Euler, Modified Euler and RK4 reduce to RECT, TRAP, SIMP methods when $f(x, y)$ is independent of y, i.e., an equation $y^{\prime}=F(x)$. Course document on numerical solution of $y^{\prime}=F(x)$, RECT, TRAP, SIMP methods: http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/solve-quadrature-numerically.pdf
Wolfram Alpha at http://www.wolframalpha.com/ can do the RECT rule and graphics with input string

```
integrate sin(x^2) using left endpoint method with interval width 0.2 from
```

$\mathrm{x}=0$ to $\mathrm{x}=1$

