Chapter 7: Laplace Theory

Background. Switches and Impulses

Laplace's method solves differential equations. It is the preferred method for solving equations containing switches or impulses.

Unit Step Define $u(t-a)=\left\{\begin{array}{ll}1 & t \geq a, \\ 0 & t<a .\end{array}\right.$. It is a switch, turned on at $t=a$.
$\operatorname{Ramp} \quad$ Define $\operatorname{ramp}(t-a)=(t-a) u(t-a)=\left\{\begin{array}{ll}t-a & t \geq a, \\ 0 & t<a .\end{array}\right.$, whose graph shape is a continuous ramp at 45 -degree incline starting at $t=a$.
Unit Pulse Define pulse $(t, a, b)=\left\{\begin{array}{ll}1 & a \leq t<b, \\ 0 & \text { otherwise }\end{array}=u(t-a)-u(t-b)\right.$. The switch is ON at time $t=a$ and then OFF at time $t=b$.

Impulse of a Force

Define the impulse of an applied force $F(t)$ on time interval $a \leq t \leq b$ by the equation

$$
\text { Impulse of } F=\int_{a}^{b} F(t) d t=\left(\frac{\int_{a}^{b} F(t) d t}{b-a}\right)(b-a)=\text { Average Force } \times \text { Duration Time. }
$$

Dirac Unit Impulse

A Dirac impulse acts like a hammer hit, a brief injection of energy into a system. It is a special idealization of a real hammer hit, in which only the impulse of the force is deemed important, and not its magnitude nor duration.
Define the Dirac Unit Impulse by the equation $\delta(t-a)=\frac{d u}{d t}(t-a)$, where $u(t-a)$ is the unit step. Symbol δ makes sense only under an integral sign, and the integral in question must be a generalized Riemann integral (definition pending), with new evaluation rules. Symbol δ is an abbreviation like etc or e.g., because it abbreviates a paragraph of descriptive text.

- Symbol $M \delta(t-a)$ represents an ideal impulse of magnitude M at time $t=a$. Value M is the change in momentum, but $M \delta(t-a)$ contains no detail about the applied force or the duraction. A common force approximation for a hammer hit of very small duration $2 h$ and impulse M is Dirac's approximation

$$
F_{h}(t)=\frac{M}{2 h} \text { pulse }(t, a-h, a+h) .
$$

- Symbol δ is not manipulated as an ordinary function. It is a special modeling tool with rules for application and rules for algebraic manipulation.

THEOREM (Second Shifting Theorem). Let $f(t)$ and $g(t)$ be piecewise continuous and of exponential order. Then for $a \geq 0$,

$$
\begin{aligned}
e^{-a s} \mathcal{L}(f(t)) & =\mathcal{L}\left(\left.f(t) u(t)\right|_{t:=t-a}\right) \\
\mathcal{L}(g(t) u(t-a)) & =e^{-a s} \mathcal{L}\left(\left.g(t)\right|_{t:=t+a}\right)
\end{aligned}
$$

Sample Problem 2. Solve the following by Laplace methods.
(a) Forward table. Compute the Laplace integral for the unit step, ramp and pulse, in these special cases:
(1) $\mathcal{L}(10 u(t-\pi))$
(2) $\mathcal{L}(\operatorname{ramp}(t-2 \pi))$,
(3) $\mathcal{L}(10$ pulse $(t, 3,5))$.
(b) Backward table. Find $f(t)$ in the following special cases.
(1) $\mathcal{L}(f)=\frac{5 e^{-3 s}}{s}$
(2) $\mathcal{L}(f)=\frac{e^{-4 s}}{s^{2}}$
(3) $\mathcal{L}(f)=\frac{5}{s}\left(e^{-2 s}-e^{-3 s}\right)$.

Sample Problem 3. Solve the following Dirac Impulse and Second Shifting theorem problems.
(c) Forward table problems.
(1) $\mathcal{L}(10 \delta(t-\pi))$,
(2) $\mathcal{L}(5 \delta(t-1)+10 \delta(t-2)+15 \delta(t-3))$,
(2) $\mathcal{L}((t-\pi) \delta(t-\pi))$.

The sum of Dirac impulses in (2) is called an impulse train.

Solutions to sample problems 2 and 3

Solution (a). The forward second shifting theorem applies.
(1) $\mathcal{L}(10 u(t-\pi))=\mathcal{L}(g(t) u(t-a))$ where $g(t)=10$ and $a=\pi$. Then $\mathcal{L}(10 u(t-\pi))=$ $\mathcal{L}(g(t) u(t-a))=e^{-a s} \mathcal{L}\left(\left.g(t)\right|_{t=t+a}\right)=e^{-\pi s} \mathcal{L}\left(\left.10\right|_{t=t+\pi}\right)=\frac{10}{s} e^{-\pi s}$.
(2) $\left.\mathcal{L}(\operatorname{ramp}(t-2 \pi))=\mathcal{L}((t-2 \pi) u(t-2 \pi))=\mathcal{L}\left(\left.t u(t)\right|_{t=t-2 \pi}\right)\right)=e^{-2 \pi s} \mathcal{L}(t)=\frac{1}{s^{2}} e^{-2 \pi s}$.
(3) $\mathcal{L}(10 \operatorname{pulse}(t, 3,5))=10 \mathcal{L}(u(t-3)-u(t-5))=\frac{10}{s}\left(e^{3 s}-e^{-5 s}\right)$.

Solution (b). Presence of an exponential $e^{-a s}$ signals step $u(t-a)$ in the answer, the main tool bing the backward second shifting theorem.
(1) $\mathcal{L}(f)=\frac{5 e^{-3 s}}{s}=e^{-3 s} \frac{5}{s}=e^{-3 s} \mathcal{L}(5)=\mathcal{L}\left(\left.5 u(t)\right|_{t=t+3}\right)=\mathcal{L}(5 u(t-3))$. Lerch implies $f=$ $5 u(t-3)$.
(2) $\mathcal{L}(f)=\frac{e^{-4 s}}{s^{2}}=\frac{e-a s}{\mathcal{L}}(t)$ where $a=4$. Then $\mathcal{L}(f)=\frac{e-a s}{\mathcal{L}}(t)=\mathcal{L}\left(\left.t u(t)\right|_{t=t-a}\right)=\mathcal{L}((t-4) u(t-$ 4)) $=\mathcal{L}(\boldsymbol{\operatorname { r a m p }}(t-4))$. Lerch implies $f=\boldsymbol{\operatorname { r a m p }}(t-4)$.
(3) $\mathcal{L}(f)=e^{-2 s} \frac{5}{s}-e^{-3 s} \frac{5}{s}=\mathcal{L}(5 u(t-2))-\mathcal{L}(5 u(t-3))=\mathcal{L}(5$ pulse $(t, 2,3))$. Lerch implies $f=5$ pulse $(t, 2,3)$.

Solution (c). The main result for Dirac unit impulse δ is the equation

$$
\int_{)}^{\infty} g(t) \delta(t-a) d t=g(a)
$$

valid for $g(t)$ continuous on $0 \leq t<\infty$. When $g(t)=e^{-s t}$, then the equation implies the Laplace formula $\mathcal{L}(\delta(t-a))=e^{-a s}$.
(1) $\mathcal{L}(10 \delta(t-\pi))=10 e^{-\pi s}$, by the displayed equation with $g(t)=10 e^{-s t}$, or by using linearity and the formula $\mathcal{L}(\delta(t-a))=e^{-a s}$.
(2) $\mathcal{L}(5 \delta(t-1)+10 \delta(t-2)+15 \delta(t-3))=5 \mathcal{L}(\delta(t-1))+10 \mathcal{L}(\delta(t-2))+15 \mathcal{L}(\delta(t-3))=$ $5 e^{-s}+10 e^{-2 s}+15 e^{-3 s}$.
(3) $\mathcal{L}((t-\pi) \delta(t-2 \pi))=\int_{0}^{\infty}(t-\pi) e^{s t} \delta(t-2 \pi) d t=\left.(t-\pi) e^{-s t}\right|_{t=2 \pi}=\pi e^{-2 \pi s}$, using $g(t)=$ $(t-\pi) e^{-s t}$ and $a=2 \pi$ in the equation.

Sample Problem 4. Experiment to Find the Transfer Function $h(t)$

Consider a second order problem

$$
a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t)
$$

which by Laplace theory has a particular solution solution defined as the convolution of the transfer function $h(t)$ with the input $f(t)$,

$$
x_{p}(t)=\int_{0}^{t} f(w) h(t-w) d w
$$

Examined in this problem is another way to find $h(t)$, which is the system response to a Dirac unit impulse with zero data. Then $h(t)$ is the solution of

$$
a h^{\prime \prime}(t)+b h^{\prime}(t)+c h(t)=\delta(t), \quad h(0)=h^{\prime}(0)=0
$$

The Problem. Assume a, b, c are constants and define $g(t)=\int_{0}^{t} h(w) d w$.
(a) Show that $g(0)=g^{\prime}(0)=0$, which means g has zero data.
(b) Let $u(t)$ be the unit step. Argue that g is the solution of

$$
a g^{\prime \prime}(t)+b g^{\prime}(t)+c g(t)=u(t), \quad g(0)=g^{\prime}(0)=0 .
$$

The fundamental theorem of calculus says that $h(t)=g^{\prime}(t)$. Therefore, to compute the transfer function $h(t)$, find the response $g(t)$ to the unit step with zero data, followed by computing the derivative $g^{\prime}(t)$, which equals $h(t)$.
The experimental impact is important. Turning on a switch creates a unit step, generally easier than designing a hammer hit.
(c) Illustrate the method for finding the transfer function $h(t)$ in the special case

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=f(t) .
$$

Solutions to sample problem 4

(a) $g(0)=\int_{0}^{0} h(w) d w=0, g^{\prime}(0)=h(0)=0$.
(b) Let $u(t)$ be the unit step. Initial data was decided in part (a). The Laplace applied to $a g^{\prime \prime}(t)+b g^{\prime}(t)+c g(t)=u(t)$ gives $\left(a s^{2}+b s+c\right) \mathcal{L}(g)=\mathcal{L}(u(t))$. Then $\mathcal{L}(g)=\mathcal{L}(h(t)) \mathcal{L}(u(t))=$ $\mathcal{L}(h(t)) \frac{1}{s} \mathcal{L}\left(\int_{0}^{t} h(r) d u\right)$ by the integral theorem. Lerch's theorem then says $g(t)=\int_{0}^{t} h(r) d r$.
(c) For equation $x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=f(t)$ we replace $x(t)$ by $g(t)$ and $f(t)$ by the unit step $u(t)$, then solve $g^{\prime \prime}(t)+2 g^{\prime}(t)+5 g(t)=u(t)$, obtaining $\mathcal{L}(g)=\frac{1}{s} \frac{1}{s^{2}+2 s+5}=\mathcal{L}\left(\frac{1}{5}-\frac{1}{10} e^{-t}(2 \cos (2 t)+\right.$ $\sin (2 t))$). Then $g(t)=\frac{1}{5}-\frac{1}{10} e^{-t}(2 \cos (2 t)+\sin (2 t))$ and $h(t)=g^{\prime}(t)=\frac{1}{2} e^{-t} \sin (2 t)$.

