Sample Quiz 10

Sample Quiz 10, Problem 1. Vertical Motion Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted to an earthquake. It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes with the attached stylus onto a rotating drum, as the ground moves up. The generated trace is $x(t)$.

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass system with damping. The initial model has the form

$$
m x^{\prime \prime}+c x^{\prime}+k x=f(t)
$$

where $f(t)$ is the vertical ground force due to the earthquake. In terms of the vertical ground motion $u(t)$, we write via Newton's second law the force equation $f(t)=-m u^{\prime \prime}(t)$ (compare to falling body $-m g)$. The final model for the motion of the mass is then

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+2 \beta \Omega_{0} x^{\prime}(t)+\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t) \tag{1}\\
\frac{c}{m}=2 \beta \Omega_{0}, \quad \frac{k}{m}=\Omega_{0}^{2} \\
x(t)=\text { center of mass position measured from equilibrium } \\
u(t)=\text { vertical ground motion due to the earthquake. }
\end{array}\right.
$$

Terms seismoscope, seismograph, seismometer refer to the device in the figure. Some observations:

Slow ground movement means $x^{\prime} \approx 0$ and $x^{\prime \prime} \approx 0$, then (1) implies $\Omega_{0}^{2} x(t)=-u^{\prime \prime}(t)$. The seismometer records ground acceleration.

Fast ground movement means $x \approx 0$ and $x^{\prime} \approx 0$, then (1) implies $x^{\prime \prime}(t)=-u^{\prime \prime}(t)$. The seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right)$ are recorded. This experiment determines constants β, Ω_{0}.

The objective of (1) is to determine $u(t)$, by knowing $x(t)$ from the seismograph.

The Problem.

(a) Explain how a release test can find values for β, Ω_{0} in the model $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$.
(b) Assume the seismograph trace can be modeled at time $t=0$ (a time after the earthquake struck) by $x(t)=C e^{-a t} \sin (b t)$ for some positive constants C, a, b. Assume a release test determined $\beta=6$ and $\Omega_{0}=10$. Explain how to find a formula for the ground motion $u(t)$, then provide a formula for $u(t)$, using technology.

Solution.

(a) A release test is an experiment which provides initial data $x(0)>0, x^{\prime}(0)=0$ to the seismoscope mass. The model is $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$ (ground motion zero). The recorder graphs $x(t)$ during the experiment, until two successive maxima $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right)$ appear in the graph. This is enough information to find values for β, Ω_{0}.
In an under-damped oscillation, the characteristic equation is $(r+p)^{2}+\omega^{2}=0$ corresponding to complex conjugate roots $-p \pm \omega i$. The phase-amplitude form is $x(t)=C e^{-p t} \cos (\omega t-\alpha)$, with period $2 \pi / \omega$.
The equation $x^{\prime \prime}+2 \beta \Omega_{0} x^{\prime}+\Omega_{0}^{2} x=0$ has characteristic equation $(r+\beta)^{2}+\Omega_{0}^{2}=0$. Therefore $x(t)=C e^{-\beta t} \cos \left(\Omega_{0} t-\alpha\right)$.
The period is $t_{2}-t_{1}=2 \pi / \Omega_{0}$. Therefore, Ω_{0} is known. The maxima occur when the cosine factor is 1 , therefore

$$
\frac{x_{2}}{x_{1}}=\frac{C e^{-\beta t_{2}} \cdot 1}{C e^{-\beta t_{1}} \cdot 1}=e^{-\beta\left(t_{2}-t_{1}\right)} .
$$

This equation determines β.
(b) The equation $-u^{\prime \prime}(t)=x^{\prime \prime}(t)+2 \beta \Omega_{0} x^{\prime}(t)+\Omega_{0}^{2} x(t)$ (the model written backwards) determines $u(t)$ in terms of $x(t)$. If $x(t)$ is known, then this is a quadrature equation for the ground motion $u(t)$.
For the example $x(t)=C e^{-a t} \sin (b t), \beta=6, \Omega_{0}=10$, the quadrature equation is

$$
-u^{\prime \prime}(t)=x^{\prime \prime}(t)+12 x^{\prime}(t)+100 x(t) .
$$

After substitution of $x(t)$, the equation becomes
$-u^{\prime \prime}(t)=C \mathrm{e}^{-a t}\left(\sin (b t) a^{2}-\sin (b t) b^{2}-2 \cos (b t) a b-12 \sin (b t) a+12 \cos (b t) b+100 \sin (b t)\right)$
which can be integrated twice using Maple, for simplicity. All integration constants will be assumed zero. The answer:

$$
\begin{aligned}
u(t)= & \frac{C \mathrm{e}^{-a t}\left(12 a^{2} b+12 b^{3}-200 a b\right) \cos (b t)}{\left(a^{2}+b^{2}\right)^{2}} \\
& -\frac{C \mathrm{e}^{-a t}\left(a^{4}+2 a^{2} b^{2}+b^{4}-12 a^{3}-12 a b^{2}+100 a^{2}-100 b^{2}\right) \sin (b t)}{\left(a^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

The Maple session has this brief input:

```
de:=-diff(u(t),t,t) = diff(x(t),t,t) + 12*diff(x(t),t) + 100* x(t);
x:=t->C*exp(-a*t)*sin(b*t);
dsolve(de,u(t)); subs(_C1=0,_C2=0,%);
```

