Chapter 1. Sample Problem 1.

Part 1

$$Panel 1.$$
 $LHS = \frac{dy}{dx}$
 $= \frac{d}{dx}(23 - 18e^{-x})$
 $= 0 + 18e^{-x}$
 $RHS = -y + 23$
 $= -(23 - 18e^{-x}) + 23$
 $= 18e^{-x}$
 $LHS = RHS, DE$
 $Panel 2.$
 $LHS = 79(0)$
 $= (23 - 18e^{-x})|_{x=0}$
 $= 23 - 18e^{0}$
 $= RHS, TC$

Part 2

Newton cooling is $u'=-h(u-u_1)$, $u(o)=u_0$. Changing $y\mapsto u$ and $x\mapsto t$ for Tle given DE+IC produces $\begin{cases} u'=-(u-23),\\ u(o)=5. \end{cases}$ The h=+1 is the cooling constant, $23=u_1=ambient$ temperature, $5=u_0=initial$ temperature. Then $\begin{cases} y(x)=u(t)=apple\ temperature,\\ 23=u_1=wall\ Thermometer\ temp,\\ 5=u_0=apple\ initial\ temp,\\ -1=h=Newton\ Cooling\ Constant,\\ x=t=time. \end{cases}$

Chapter 1. Sample Problem 2.

Part 1

The tank could drain any time to to in The past, meaning There is a solution of (x) such that y(x) > 0 for xx to and y(x) = 0 for x > to. In short, 00 - many solutions. The model fails to determine a unique solution.

Part 2

If $y_0 > 0$, Here $f(x,y) = -0.02 \sqrt{|y|}$ and $\frac{2f}{2y} = -0.01 \sqrt{|y|}^{-1/2}$ on box B = { (x,y): 1x1≤10, ½ 40≤4≤10}. Picara's Provem Says Prene is a smaller box $B_1 = \{(x,y): |x| \leq H, \frac{1}{2}y \leq y \leq 10\}$ on which a unique edge-to-edge solution y(x) exists, y(0)=yo.

Part 3

The IC is
$$y(0) = 19/12$$
 feet. Because $y > 0$, N_{en} $f(x,y) = f(x)G(y)$ with $F = -0.02$ and $G = Vy$. Separation gives:

$$\frac{y'}{yVz} = -0.02$$

$$\int \frac{du}{uV_2} = -0.02 \int dx$$
, $u = y(x)$ method of quadratur
$$\frac{u'^2}{Vz} = -0.02x + C_1$$

$$y'^2 = -0.01x + C$$

$$y'' = (-0.01x + C)^2$$

$$y'' = (-0.01x +$$