
Sample Quiz1 Problem 1. An answer check for the differential equation and initial condition

dy

dx
= −y(x) + 23, y(0) = 5 (1)

requires substitution of the candidate solution y(x) = 23 − 18 e−x into the left side (LHS) and
right side (RHS), then compare the expressions for equality for all symbols. The process of testing
LHS = RHS applies to both the differential equation and the initial condition, making the answer
check have two presentation panels. Complete the following:

1. Show the two panels in an answer check for initial value problem (1).

2. Relate (1) to a Newton cooling model for warming a 5 C apple to room temperature 23 C.

References. Edwards-Penney sections 1.1, 1.4, 1.5. Newton cooling in Serway and Vuille, College
Physics 9/E, Brooks-Cole (2011), ISBN-10: 0840062060. Newton cooling differential equation
du
dt = −h(u(t)− u1), Math 2280 slide Three Examples. Math 2280 slide on Answer checks.

Sample Quiz1 Problem 2. A 2-ft high institutional coffee maker serves coffee from an orifice 5
inches above the base of the cylindrical tank. The tank drains according to the Torricelli model

dy

dx
= −0.02

√
|y(x)|, y(0) = y0. (2)

Symbol y(x) ≥ 0 is the tank coffee height in feet above the orifice at time x seconds, while y0 ≥ 0
is the coffee height at time x = 0.

Establish these facts about the physical problem.

1. If y0 = 0, then y(x) is not determined by the model. A physical explanation is expected,
based on possible past tank levels. Numerical solutions are therefore technological nonsense.

2. If y0 > 0, then the solution y(x) is uniquely determined and computable by numerical
software. Justify using Picard’s existence-uniqueness theorem.

3. Solve equation (2) using separation of variables when y0 is 19 inches, then numerically find
the drain time (about 125 seconds).

References. Edwards-Penney, Picard’s theorem 1 section 1.3 and Torricelli’s Law section 1.4.
Tank draining Mathematica demo at Wolfram Research. Carl Schaschke, Fluid Mechanics:
Worked Examples for Engineers, The Institution of Chemical Engineers (2005), ISBN-10: 0852954980,
Chapter 6. Math 2280 slide on Picard and Peano Theorems.
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Sample Quiz2 Problem 1.

Suppose a cup of hot chocolate has an initial temperature of 185◦F when freshly poured and the
desired drinking temperature is 160◦F . After 50 seconds in a room at 68◦F , the temperature
has cooled to 181◦F . Newton’s Law of Cooling applies to model the temperature u(t) of the
chocolate by the initial value problem

du

dt
= −h (u(t) − 68) , u(0) = 185,

where h > 0 is the cooling constant, to be determined from supplied information.

1. Find an equation for the temperature u(t) at any time t.

2. Find the Newton cooling constant h.

3. Determine the time required for the chocolate to cool to 160◦F .

References. Edwards-Penney section 1.5. Serway and Vuille, College Physics 9/E, Brooks-Cole
(2011), ISBN-10: 0840062060. An answer check might use The Coffee Cooling Problem, a Wolfram
Demonstration Project contributed by S.M. Binder, which can be found at
http://demonstrations.wolfram.com/TheCoffeeCoolingProblem/.

Credits. Created by Rebecca Terry, January 2014.

Sample Quiz2 Problem 2. Logistic growth F (x) = rx(1 − x/K) can be used to describe the
annual natural growth of a fish stock. Symbol x(t) is the stock biomass in number of fish at the
start of month t. The intrinsic growth rate is symbol r. The environmental carrying capacity in
stock biomass terms is symbol K.

1. Assume a fish pond has carrying capacity K = 780500 and that 80% of the the fish survive to
maturity. We’ll assume 6 months to maturity and r = 0.8. Write in detail the no-harvesting
model x′(t) = F (x(t)) and find the equilibrium values.

2. Assume constant harvesting H to give the model x′(t) = F (x(t)) − H. Use the quadratic
formula from algebra to find the equilibrium points as a function of symbol H ≥ 0. Then
verify the following results.

If H = 156100, then there are two states: extinction for x(0) < 390250 and limiting
population 390250 otherwise.

If H > 156100, then the extinction state is the only possibility.

If H < 156100, then there are two equilibria. The larger equilibrium population size is
stable and the smaller is unstable. These numbers imply sustainable harvest for certain
population sizes, but not all.

3. Assume a constant harvest rate H. Create two graphics of the population x(t) over 36
months. The first uses a harvesting size H to show sustainable harvest. The second uses
a different size H to show non-sustainable harvest. Handwritten plots are expected, or a
computer plot, if you know how.

References. Edwards-Penney sections 2.1, 2.2. Course documents: Logistic Equation, Stability,
Fish Farming and a logistic investigation in Malaysia by M.F. Laham 2012.
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Sample Quiz 2 solutions plus maple code



Sample Quiz 2 solutions plus maple code



>  >  

>  >  

>  >  

>  >  

>  >  

(1)(1)

F : = x - > r * x * ( 1 - x / K ) : G : = x - > r * x * ( 1 - x / K ) - H :
so lve (G(x )=0 ,x ) ;

de :=d i f f ( x ( t ) , t )=G(x ( t ) ) : r :=0 .8 :K :=780500 :H0 :=K* r /4 :H :=H0-5000 :
a :=K /2+ (1 /2 ) *sqr t (K^2 -4 *H*K / r ) ;b :=K /2 - (1 /2 ) *sqr t (K^2 -4 *H*K / r ) ;
i c : = [ [ 0 , 0 . 9 * b ] , [ 0 , 0 . 9 4 * b ] , [ 0 , 0 . 9 8 * b ] , [ 0 , b ] , [ 0 , ( a + b ) / 2 ] , [ 0 , ( 3 * a + b )
/ 4 ] ,
[ 0 , a ] , [ 0 , 1 . 2 * a ] , [ 0 , 1 . 4 * a ] , [ 0 , 1 . 6 * a ] ] :
opts :=d i r f ie ld=[10 ,10 ] ,a r rows=l ine ,co lor=gray , l ineco lor=b lack ,
thickness=2:
D E t o o l s [ D E p l o t ] ( d e , x ( t ) , t = 0 . . 3 6 , x = 0 . . K , i c , o p t s ) ;

d e : = d i f f ( x ( t ) , t ) = G ( x ( t ) ) :
r :=0.8:K:=780500:H0:=K*r /4:
H:=H0+6000;a:=K/2 ;b:=K/2;
i c : = [ [ 0 , 0 . 9 * b ] , [ 0 , 0 . 9 4 * b ] , [ 0 , 0 . 9 8 * b ] , [ 0 , b ] , [ 0 , a ] , [ 0 , 1 . 2 * a ] , [ 0 ,
1 . 4 * a ] ,
[ 0 , 1 . 6 * a ] , [ 0 , 1 . 8 * a ] , [ 0 , 2 * a ] ] :



>  >  

opts :=d i r f ie ld=[10 ,10 ] ,a r rows=l ine ,co lor=gray , l ineco lor=b lack ,
thickness=2:
D E t o o l s [ D E p l o t ] ( d e , x ( t ) , t = 0 . . 3 6 , x = 0 . . K , i c , o p t s ) ;

All solutions decrease.



Sample Quiz3 Problem 1. A graphic called a phase diagram displays the behavior of all
solutions of u′ = F (u). A phase line diagram is an abbreviation for a direction field on the
vertical axis (u-axis). It consists of equilibrium points and signs of F (u) between equilibria. A
phase diagram can be created solely from a phase line diagram, using just three drawing rules:

1. Solutions don’t cross.

2. Equilibrium solutions are horizontal lines u = c. All other solutions are increasing or
decreasing.

3. A solution curve can be moved rigidly left or right to create another solution curve.

Use these tools on the equation u′ = u(u2 − 4) to make a phase line diagram, and then make a
phase diagram with at least 8 threaded solutions. Label the equilibria as stable, unstable, funnel,
spout, node.

References. Edwards-Penney section 2.2. Course document on Stability,

Sample Quiz3 Problem 2. An autonomous differential equation dy
dx = F (x) with initial condi-

tion y(0) = y0 has a formal solution

y(x) = y0 +

∫ x

0
F (u)du.

The integral may not be solvable by calculus methods. In this case, the integral is evaluated
numerically to compute y(x) or to plot a graphic. There are three basic numerical methods that
apply, the rectangular rule (RECT), the trapezoidal rule (TRAP)and Simpson’s rule (SIMP).

Apply the three methods for F (x) = sin(x2) and y0 = 0 using step size h = 0.2 from x = 0 to
x = 1. Then fill in the blanks in the following table. Use technology if it saves time. Lastly,
compare the four data sets in a plot, using technology.

x− values 0.0 0.2 0.4 0.6 0.8 1.0
y − to 10 digits 0.0 0.0026663619 0.02129435557 0.07133622797 0.1657380596 0.3102683017

y − RECT values 0.0 0.0 0.007997866838 0.2297554431

y − TRAP values 0.0 0.02392968750 0.07508893150 0.3139025416

y − SIMP values 0.0 0.002666288917 0.02129368017 0.1657330636

References. Edwards-Penney Sections 2.4, 2.5, 2.6, because methods Euler, Modified Euler and
RK4 reduce to RECT, TRAP, SIMP methods when f(x, y) is independent of y, i.e., an equation
y′ = F (x). Course document on numerical solution of y′ = F (x) RECT, TRAP, SIMP methods.
Wolfram Alpha at http://www.wolframalpha.com/ can do the RECT rule and graphics with
input string

integrate sin(x^2) using left endpoint method with interval width 0.2 from

x=0 to x=1
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10-digit integral of sin(x^2)                                              RECT rule plot of y'=sin(x^2), h=0.2

TRAP rule plot of y'=sin(x^2), h=0.2                                  SIMP rule plot of y'=sin(x^2), h=0.2



Sample Quiz 4

Sample Quiz4 Problem 1. The velocity of a crossbow arrow fired upward from the ground is
given at different times in the following table.

Time t in seconds Velocity v(t) in ft/sec Location

0.000 50 Ground
1.413 0 Maximum
2.980 -45 Near Ground Impact

(a) The velocity v(t) can be approximated by a quadratic polynomial

z(t) = at2 + bt+ c

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve
for them to obtain a ≈ 2.238, b ≈ −38.55, c = 50.

(b) Assume a linear drag model v′ = −32 − ρv. Substitute the polynomial answer v = z(t) of
(a) into this differential equation, then substitute t = 0 and solve for ρ ≈ 0.131.

(c) Solve the model w′ = −32 − ρw, w(0) = 50 to get w(t) = −32
ρ +

(
50 + 32

ρ

)
e−ρt. Substitute

ρ = 0.131. Then w(t) = −244.2748092 + 294.2748092 e−0.131 t is an exponential model for
linear drag which might reproduce the crossbow data.

(d) Compare w(t) and z(t) in a plot. Comment on the plot and what it means. Bear in mind
that w(t) is an exponential model while z(t) is a quadratic model. Neither of them are the
true velocty v(t) which produced the crossbow data.

References. Edwards-Penney sections 2.3, 3.1, 3.2. Course documents on Linear algebraic
equations and Newton kinematics.

Sample Quiz4 Problem 2. Consider the system of differential equations

x′1 = −1
6x1 + 1

6x3,

x′2 = 1
6x1 − 1

3x2,

x′3 = 1
3x2 − 1

6x3,

for the amounts x1, x2, x3 of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C
The volumes are 60, 30, 60 for A,B,C, respectively.

The steady-state salt amounts in the three tanks are found by formally setting x′1 = x′2 = x′3 = 0
and then solving for the symbols x1, x2, x3. Solve the corresponding linear system of algebraic
equations to obtain the answer x1 = x3 = 2c, x2 = c, which means the total amount of salt is
uniformly distributed in the tanks in ratio 2 : 1 : 2.

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5. Course documents on Linear
algebraic equations and Systems and Brine Tanks.
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typo: v(t) above should be z(t)





Sample Quiz 5

Sample Quiz 5, Problem 1.Harmonic Vibration

A mass of m = 250 grams attached to a spring of Hooke’s constant k undergoes free undamped
vibration. At equilibrium, the spring is stretched 25 cm by a force of 8 Newtons. At time t = 0,
the spring is stretched 0.5 m and the mass is set in motion with initial velocity 5 m/s directed
away from equilibrium. Find:

(a) The numerical value of Hooke’s constant k.

(b) The initial value problem for vibration x(t).

Solution
(a): Hooke’s law Force=k(elongation) is applied with force 8 Newtons and elongation 25/100 =
1/4 meter. Equation 8 = k(1/4) implies k = 32 N/m.

(b): Given m = 250/1000 kg and k = 32 N/m from part (a), then the free vibration model
mx′′ + kx = 0 becomes 1

4x
′′ + 32x = 0. Initial conditions are x(0) = 0.5 m and x′(0) = 5 m/s.

The initial value problem is 



d2x

dt2
+ 128x = 0,

x(0) = 0.5,
x′(0) = 5.
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Sample Quiz 5, Problem 2. Phase-Amplitude Conversion
Write the vibration equation

x(t) = 2 cos(3t) + 5 sin(3t)

in phase-amplitude form x = A cos(ωt − α). Create a graphic of x(t) with labels for period,
amplitude and phase shift.

Solution
The answer and the graphic appear below.

x(t) =
√

29 cos(3t− 1.190289950) =
√

29 cos(3(t− 0.3967633167)).

Harmonic Oscillation

The graph of 2 cos(3t) + 5 sin(3t). It has ampli-
tude A =

√
29 = 5.385, period P = 2π/3 and

phase shift F = 0.3967633167. The graph is on
0 ≤ t ≤ P + F .

Algebra Details. The plan is to re-write x(t) in the form x(t) = A cos(ωt − α), called the
phase-amplitude form of the harmonic oscillation.

Start with x(t) = 2 cos(3t) + 5 sin(3t). Trig identity x(t) = A cos(ωt − α) = A cos(α) cos(ωt) +
A sin(α) sin(ωt) causes the definitions

ω = 3, A cos(α) = 2, A sin(α) = 5.

The Pythagorean identity cos2 α+ sin2 α = 1 implies A2 = 22 + 52 = 29 and then the amplitude
is A =

√
29. Because cosα = 2/A, sinα = 5/A, then both the sine and cosine are positive,

placing angle α in quadrant I. Divide equations cosα = 2/A, sinα = 5/A to obtain tan(α) = 5/2,
which by calculator implies α = arctan(5/2) = 1.190289950 radians or 68.19859051 degrees. Then
x(t) = A cos(ωt− α) =

√
29 cos(3t− 1.190289950).

Computer Details. Either equation for x(t) can be used to produce a computer graphic. A
hand-drawn graphic would use only the phase-amplitude form. The period is P = 2π/ω = 2π/3.
The amplitude is A =

√
29 = 5.385164807 and the phase shift is F = α/ω = 0.3967633167. The

graph is on 0 ≤ t ≤ P + F .

# Maple

F:=evalf(arctan(5/2)/3); P:=2*Pi/3;A:=sqrt(29);

X:=t->2*cos(3*t)+5*sin(3*t);

opts:=xtickmarks=[0,F,P/2+F,P+F],ytickmarks=[-A,0,A],

axes=boxed,thickness=3,labels=["",""];

plot(X(t),t=0..P+F,opts);
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Sample Quiz 5, Problem 3. Undamped Spring-Mass System
A mass of 6 Kg is attached to a spring that elongates 20 centimeters due to a force of 12 Newtons.
The motion starts at equilibrium with velocity −5 m/s. Find an equation for x(t) using the free
undamped vibration model mx′′ + kx = 0.

Solution

The answer is x(t) = −
√

5
2 sin(

√
10t).

The mass is m = 6 kg. Hooke’s law F = kx is applied with F = 12 N and x = 20/100 m. Then
Hooke’s constant is k = 60 N/m. Initial conditions are x(0) = 0 m (equilibrium) and x′(0) = −5
m/s.

The Model. 



6
d2x

dt2
+ 60x = 0,

x(0) = 0,
x′(0) = −5.

Solving the Model.

The characteristic equation 6r2 + 60 = 0 is solved for r = ±i
√

10, then the Euler solution atoms
are cos(

√
10t), sin(

√
10t) and we write the general solution as

x(t) = c1 cos(
√

10t) + c2 sin(
√

10t).

The task remaining is determination of constants c1, c2 subject to initial conditions x(0) = 0,
x′(0) = −5. The linear algebra problem uses the derivative formula

x′(t) = −
√

10c1 sin(
√

10t) +
√

10c2 cos(
√

10t).

The 2×2 system of linear algebraic equations for c1, c2 is obtained from the two equations x(0) = 0,
x′(0) = −5 as follows.

{
cos(0)c1 + sin(0)c2 = 0, Equation x(0) = 0

−
√

10 sin(0)c1 +
√

10 cos(0)c2 = −5, Equation x′(0) = −5

Because cos(0) = 1, sin(0) = 0, then c1 = 0 and c2 = −5/
√

10 = −
√

5/2. Insert answers c1, c2
into the general solution to find the answer to the initial value problem

x(t) = −
√

5

2
sin(
√

10t).
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Sample Quiz 5, Problem 4. Beats

The physical phenomenon of beats refers to the periodic interference of two sound waves of
slightly different frequencies. A destructive interference occurs during a very brief interval, so our
impression is that the sound periodically stops, only briefly, and then starts again with a beat, a
section of sound that is instantaneously loud again. Human heartbeat uses the same terminology.
Our pulse rate is 40 − 100 beats per minute at rest. An illustration of the graphical meaning
appears in the figure below.

Beats

Shown in red is a periodic oscillation x(t) =
2 sin 4t sin 40t with rapidly–varying factor sin 40t
and the two slowly–varying envelope curves
x1(t) = 2 sin 4t (black), x2(t) = −2 sin 4t (grey).

The undamped, forced spring-mass problem
x′′ + 1296x = 640 cos(44t), x(0) = x′(0) = 0
has by trig identities the solution
x(t) = cos(36t)− cos(44t) = 2 sin 4t sin 40t.

A key example is piano tuning. A tuning fork is struck, then the piano string is tuned until the
beats are not heard. The number of beats per second (unit Hz) is approximately the frequency
difference between the two sources, e.g., two tuning forks of frequencies 440 Hz and 437 Hz would
produce 3 beats per second.

The average human ear can detect beats only if the two interfering sound waves have a frequency
difference of about 7 Hz or less. Ear-tuned pianos are subject to the same human ear limita-
tions. Two piano keys are more than 7 Hz apart, even for a badly tuned piano, which is why
simultaneously struck piano keys are heard as just one sound (no beats).

The beat we hear corresponds to maxima in the figure. We see not the two individual sound
waves, but their superposition. When the tuning fork and the piano string have the same exact
frequency ω, then the figure would show a simple harmonic wave, because the two sounds would
superimpose to a graph that looks like cos(ωt− α).

The origin of the phenomenon of beats can be seen from the formula

x(t) = 2 sin at sin bt.

There is no sound when x(t) ≈ 0: this is when destructive interference occurs. When a is
small compared to b, e.g., a = 4 and b = 40, then there are long intervals between the zeros of
A(t) = 2 sin at, at which destructive interference occurs. Otherwise, the amplitude of the sound
wave is the average value of A(t), which is 1. The sound stops at a zero of A(t) and then it is
rapidly loud again, causing the beat.

The Problem. Solve the initial value problem

x′′ + 1296x = 640 cos(44t), x(0) = x′(0) = 0

by undetermined coefficients and linear algebra, obtaining the solution x(t) = cos(36t) −
cos(44t). Then show the trig details for x(t) = 2 sin(4t) sin(40t). Finally, graph x(t) and
its slowly varying envelope curves on 0 ≤ t ≤ π.
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Solution to Problem 4.

The trial solution for undetermined coefficients has the form x = d1 cos(44t) + d2 sin(44t). This
is the Rule I trial solution. But Rule II does not modify the trial solution, because the Euler
solution atoms cos(44t), sin(44t) are not solutions of the homogeneous equation x′′ + 1296x = 0.

Insert the trial solution into x′′ + 1296x = 640 cos(44t) to obtain the equation

(1296− 442)d1 cos(44t) + (1296− 442)d2 sin(44t) = 640 cos(44t).

Then matching atoms across the equal sign implies d1 = 640/(1296 − 442) = −1, d2 = 0. The
particular solution is the trial solution with d1 = −1, d2 = 0. The formula obtained so far is

xp(t) = − cos(44t).

The homogeneous solution xh(t) is found from the characteristic equation r2 + 1296 = 0, with
complex conjugate roots r = ±36i. Then

xh(t) = c1 cos(36t) + c2 sin(36t).

The initial conditions x(0) = x′(0) = 0 are used together with the general solution and its
derivative

x(t) = xh(t) + xp(t) = c1 cos(36t) + c2 sin(36t)− cos(44t)
x′(t) = x′h(t) + x′p(t) = −36c1 sin(36t) + 36c2 cos(36t) + 44 sin(44t)

to obtain the 2× 2 linear algebraic system of equations

{
cos(0)c1 + sin(0)c2 = cos(0), Equation x(0) = 0

−36 sin(0)c1 + 36 cos(0)c2 = −44 sin(0). Equation x′(0) = 0

Then c1 = 1, c2 = 0 and x(t) = cos(36t)− cos(44t).

The trig identities cos(a−b) = cos(a) cos(b)+sin(a) sin(b), cos(a+b) = cos(a) cos(b)−sin(a) sin(b)
are subtracted to give cos(a − b) − cos(a + b) = 2 sin(a) sin(b). Let a − b = 36t, a + b = 44t and
solve for a = 40t, b = 4t. Then

x(t) = cos(36t)− cos(44t)
= cos(a− b)− cos(a+ b)
= 2 sin a sin b
= 2 sin 4t sin 40t.

The graphic of the problem was obtained from MAPLE.

a:=4:b:=10*a:

opts:=scaling=constrained,axes=boxed,axesfont=[Courier,bold,16],

labelfont=[Courier,bold,16],thickness=4,color=[red,gray,black]:

plot([sin(a*t)*sin(b*t),-sin(a*t),sin(a*t)],t=0..2*(2*Pi/a),opts);

5



Sample Quiz 6

Sample Quiz 6, Problem 1. Vertical Motion Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted to an earthquake.
It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm
per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes
with the attached stylus onto a rotating drum, as the
ground moves up. The generated trace is x(t).

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass
system with damping. The initial model has the form

mx′′ + cx′ + kx = f(t)

where f(t) is the vertical ground force due to the earthquake. In terms of the vertical ground
motion u(t), we write via Newton’s second law the force equation f(t) = −mu′′(t) (compare to
falling body −mg). The final model for the motion of the mass is then





x′′(t) + 2βΩ0x
′(t) + Ω2

0x(t) = −u′′(t),
c

m
= 2βΩ0,

k

m
= Ω2

0,

x(t) = center of mass position measured from equilibrium,

u(t) = vertical ground motion due to the earthquake.

(1)

Terms seismoscope, seismograph, seismometer refer to the device in the figure. Some ob-
servations:

Slow ground movement means x′ ≈ 0 and x′′ ≈ 0, then (1) implies Ω2
0x(t) = −u′′(t). The

seismometer records ground acceleration.

Fast ground movement means x ≈ 0 and x′ ≈ 0, then (1) implies x′′(t) = −u′′(t). The
seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima
(t1, x1), (t2, x2) are recorded. This experiment determines constants β,Ω0.

The objective of (1) is to determine u(t), by knowing x(t) from the seismograph.

The Problem.

(a) Explain how a release test can find values for β,Ω0 in the model x′′+2βΩ0x
′+Ω2

0x = 0.

(b) Assume the seismograph trace can be modeled at time t = 0 (a time after the earth-
quake struck) by x(t) = Ce−at sin(bt) for some positive constants C, a, b. Assume a release
test determined 2βΩ0 = 12 and Ω2

0 = 100. Explain how to find a formula for the ground
motion u(t), then provide a formula for u(t), using technology.

1



Solution.

(a) A release test is an experiment which provides initial data x(0) > 0, x′(0) = 0 to the
seismoscope mass. The model is x′′ + 2βΩ0x

′ + Ω2
0x = 0 (ground motion zero). The recorder

graphs x(t) during the experiment, until two successive maxima (t1, x1), (t2, x2) appear in the
graph. This is enough information to find values for β,Ω0.

In an under-damped oscillation, the characteristic equation is (r+ p)2 + ω2 = 0 corresponding to
complex conjugate roots −p ± ωi. The phase-amplitude form is x(t) = Ce−pt cos(ωt − α), with
period 2π/ω.

The equation x′′ + 2βΩ0x
′ + Ω2

0x = 0 has characteristic equation (r + β)2 + Ω2
0 = 0. Therefore

x(t) = Ce−βt cos(Ω0t− α).

The period is t2− t1 = 2π/Ω0. Therefore, Ω0 is known. The maxima occur when the cosine factor
is 1, therefore

x2
x1

=
Ce−βt2 · 1
Ce−βt1 · 1 = e−β(t2−t1).

This equation determines β.

(b) The equation −u′′(t) = x′′(t)+2βΩ0x
′(t)+Ω2

0x(t) (the model written backwards) determines
u(t) in terms of x(t). If x(t) is known, then this is a quadrature equation for the ground motion
u(t).

For the example x(t) = Ce−at sin(bt), 2βΩ0 = 12,Ω2
0 = 100, then the quadrature equation is

−u′′(t) = x′′(t) + 12x′(t) + 100x(t).

After substitution of x(t), the equation becomes

−u′′(t) = Ce−at
(
sin (bt) a2 − sin (bt) b2 − 2 cos (bt) ab− 12 sin (bt) a+ 12 cos (bt) b+ 100 sin (bt)

)

which can be integrated twice using Maple, for simplicity. All integration constants will be
assumed zero. The answer:

u (t) =
Ce−at

(
12 a2b+ 12 b3 − 200 ab

)
cos (bt)

(a2 + b2)2

−Ce−at
(
a4 + 2 a2b2 + b4 − 12 a3 − 12 ab2 + 100 a2 − 100 b2

)
sin (bt)

(a2 + b2)2

The Maple session has this brief input:

de:=-diff(u(t),t,t) = diff(x(t),t,t) + 12*diff(x(t),t) + 100* x(t);

x:=t->C*exp(-a*t)*sin(b*t);

dsolve(de,u(t));subs(_C1=0,_C2=0,%);
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Sample Quiz6 Problem 2. Resistive Network with 2 Loops and DC Sources.

The Branch Current Method can be used to find a 3×3 linear system for the branch currents
I1, I2, I3.

I1 − I2 − I3 = 0 KCL, upper node
4I1 + 2I2 = 28 KVL, left loop

2I2 − I3 = 7 KVL, right loop

Symbol KCL means Kirchhoff’s Current Law, which says the algebraic sum of the currents at a
node is zero. Symbol KVL means Kirchhoff’s Voltage Law, which says the algebraic sum of the
voltage drops around a closed loop is zero.

(a) Solve the equations to verify the currents reported in the figure: I1 = 5, I2 = 4, I3 = 1
Amperes.

(b) Compute the voltage drops across resistors R1, R2, R3. Answer: 20, 8, 1 volts.

References. Edwards-Penney 3.7, electric circuits. All About Circuits Volume I – DC, by T.
Kuphaldt:
http://www.allaboutcircuits.com/.
Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf.
Solved examples of electrical networks can be found in the lecture notes of Ruye Wang:
http://fourier.eng.hmc.edu/e84/lectures/ch2/node2.html.
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Sample Quiz 6, Problem 3. RLC-Circuit

The Problem. Suppose E = 100 sin(20t), L = 5 H, R = 250 Ω and C = 0.002 F. The
model for the charge Q(t) is LQ′′ +RQ′ + 1

C
Q = E(t).

(a) Differentiate the charge model and substitute I = dQ
dt

to obtain the current model
5I ′′ + 250I ′ + 500I = 2000 cos(20t).

(b) Find the reactance S = ωL− 1
ωC

, where ω = 20 is the input frequency, the natural
frequency of E = 100 sin(20t) and E ′ = 2000 cos(20t).

(c) Substitute I = A cos(20t) + B sin(20t) into the current model (a) and solve for A =
−12
109
, B = 40

109
. Then the steady-state current is

I(t) = A cos(20t) +B sin(20t) =
−12 cos(20t) + 40 sin(20t)

109
.

(d) Write the answer in (c) in phase-amplitude form I = I0 sin(20t− δ) with I0 > 0 and
δ ≥ 0. Then compute the time lag δ/ω.

Answers: I0 = 4√
109

, δ = arctan(3/10), δ/ω = 0.01457.

References

Course slides on Electric Circuits:
http://www.math.utah.edu/~gustafso/s2019/2280/lectureslides/electricalCircuits.pdf.
Edwards-Penney Differential Equations and Boundary Value Problems, sections 3.4, 3.5, 3.6, 3.7.
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Solutions to Problem 3

Problem 1(a) Start with 5Q′′ + 250Q′ + 500Q = 100 sin(20t). Differentiate across to get
5Q′′′ + 250Q′′ + 500Q′ = 2000 cos(20t). Change Q′ to I.

Problem 1(b) S = (20)(5)− 1/(20 ∗ 0.002) = 75

Problem 1(c) It helps to use the differential equation u′′ + 400u = 0 satisfied by both u1 =
cos(20t) and u2 = sin(20t). Functions u1, u2 are Euler solution atoms, hence independent. Along
the solution path, we’ll use u′1 = −20 sin(20t) = −20u2 and u′2 = 20 cos(20t) = 20u1. The
arithmetic is simplified by dividing the equation first by 5. We then substitute I = Au1 +Bu2.

I ′′ + 50I ′ + 100I = 400 sin(20t)
A(u′′1 + 50u′1 + 100u1) +B(u′′2 + 50u′2 + 100u2) = 400 sin(20t)
A(−400u1 + 50(−20u2) + 100u1) +B(−400u2 + 50(20u1) + 100u2) = 400 sin(20t)
(−400A+ 100A+ 1000B)u1 + (−1000A− 400B + 100B)u2 = 400u2

By independence of u1, u2, coefficients of u1, u2 on each side of the equation must match. The
linear algebra property is called unique representation of linear combinations. This implies the
2× 2 system of equations

−300A + 1000B = 0,
−1000A − 300B = 400.

The solution by Cramer’s rule (the easiest method) is A = −12/109, B = 40/109. Then the
steady-state current is

I(t) = A cos(20t) +B sin(20t) =
−12 cos(20t) + 40 sin(20t)

109
.

The steady-state current is defined to be the sum of those terms in the general solution of the
differential equation that remain after all terms that limit to zero at t = ∞ have been removed.
The logic is that only these terms contribute to a graphic or to a numerical calculation after
enough time has passed (as t→∞).

Problem 1(d) Let cos(δ) = B/I0, sin(δ) = −A/I0, I0 =
√
A2 +B2. Use the trig identity

sin(a− b) = sin(a) cos(b)− cos(a) sin(b)

to rearrange the current formula as follows:

I(t) = A cos(20t) +B sin(20t) = I0(sin(20t) cos(δ)− sin(δ) cos(20t)) = I0 sin(20t− δ).

Compute I0 =
√
A2 +B2 = 4√

109
. Compute tan(δ) = sin δ

cos δ = −A/B = 12/40. Then δ =

arctan(12/40) and finally δ/ω = arctan(3/10)/20 = 0.01457.

Another method, using Edwards-Penney Section 3.7: Compute the impedance Z =
√
R2 + S2 =√

2502 + 752 =
√

68125 = 25
√

109 and then I0 = E0/Z = 4/
√

109. The phase δ = arctan(S/R) =

arctan(75/250) = arctan(3/10). Then the time lag is δ/ω = arctan(0.3)
20 = 0.01457.
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Sample Quiz 7

Sample Quiz 7, Problem 1. XXXXX

The Problem.

Sample Quiz 7, Problem 3. Heat Transfer and the Mean Value Property.

Consider the cross section of a long rectangular dam on a river, represented in the figure.

The boundaries of the dam are subject to three
factors: the temperature in degrees Celsius of the
air (20), the water (25), and the ground at its
base (30).

An analysis of the heat transfer from the three sources will be done from the equilibrium temper-
ature, which is found by the Mean Value Property below.

The Mean Value Property

If a plate is at thermal equilibrium, and C is a
circle contained in the plate with center P , then
the temperature at P is the average value of the
temperature function over C.

A version of the Mean Value Property says that the temperature at center P of circle C is the
average of the temperatures at four equally-spaced points on C. We construct a grid as in the
figure below, label the unknown temperatures at interior grid points as x1, x2, x3, x4, then use the
property to obtain four equations.

Four-Point
Temperature Averages

x1 =
1

4
(20 + 25 + x2 + x3)

x2 =
1

4
(20 + 20 + x1 + x4)

x3 =
1

4
(25 + 30 + x1 + x4)

x4 =
1

4
(20 + 30 + x2 + x3)

Solve the equations for the four temperatures x1 = 23.125, x2 = 21.875, x3 = 25.625, x4 = 24.375
by any method.

References. EPH Chapters 12, 13, on heat transfer. Used in Partial Differential Equations 3150.
Intro Differential Equations 2280 uses Chapter 9 of a different Edwards-Penney textbook.
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Sample Quiz 8

Sample Quiz 8, Problem 1. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations
of order N , for example equations like

y′′ + 16y = 0, y′′′′ + 4y′′ = 0,
d5y

dx5
+ 2y′′′ + y′′ = 0.

1. Find the N th degree characteristic equation by Euler’s substitution y = erx. For
instance, y′′+16y = 0 has characteristic equation r2+16 = 0, a polynomial equation
of degree N = 2.

2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic
equation. List the N roots according to multiplicity.

3. Construct N distinct Euler solution atoms from the list of roots. Then the general
solution of the differential equation is a linear combination of the Euler solution atoms
with arbitrary coefficients c1, c2, c3, . . ..

The solution space S of the differential equation is given by

S = span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms e0x, xe0x, x2e0x or 1, x, x2.

Three roots 0, 0, 2 produce three atoms e0x, xe0x, e2x.

Two complex conjugate roots 2± 3i produce two atoms e2x cos(3x), e2x sin(3x).1

Four complex conjugate roots listed according to multiplicity as 2±3i, 2±3i produce four
atoms e2x cos(3x), e2x sin(3x), xe2x cos(3x), xe2x sin(3x).

Seven roots 1, 1, 3, 3, 3,±3i produce seven atoms ex, xex, e3x, xe3x, x2e3x, cos(3x), sin(3x).

Two conjugate complex roots a±bi (b > 0) arising from roots of (r−a)2+b2 = 0 produce
two atoms eax cos(bx), eax sin(bx).

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

(a) y′′ + 16y′ = 0

(b) y′′ + 16y = 0

(c) y′′′′ + 16y′′ = 0

(d) y′′ + 16y = 0, y(0) = 1, y′(0) = −1

(e) y′′′′ + 9y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

(f) The characteristic equation is (r − 2)2(r2 − 4) = 0.

(g) The characteristic equation is (r − 1)2(r2 − 1)((r + 2)2 + 4) = 0.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0,−1, 2, 2, 3 +
4i, 3− 4i.

1The Reason: cos(3x) = 1
2
e3xi + 1

2
e−3xi by Euler’s formula eiθ = cos θ + i sin θ. Then e2x cos(3x) = 1

2
e2x+3xi +

1
2
e2x−3xi is a linear combination of exponentials erx where r is a root of the characteristic equation. Euler’s

substitution implies erx is a solution, so by superposition, so also is e2x cos(3x). Similar for e2x sin(3x).

1



Solutions to Problem 1

(a) y′′+16y′ = 0 upon substitution of y = erx becomes (r2+16r)erx = 0. Cancel erx to find the
characteristic equation r2 + 16r = 0. It factors into r(r + 16) = 0, then the two roots r make
the list r = 0,−16. The Euler solution atoms for these roots are e0x, e−16x. Report the general
solution y = c1e

0x + c2e
−16x = c1 + c2e

−16x, where symbols c1, c2 stand for arbitrary constants.

(b) y′′ + 16y = 0 has characteristic equation r2 + 16 = 0. Because a quadratic equation
(r − a)2 + b2 = 0 has roots r = a ± bi, then the root list for r2 + 16 = 0 is 0 + 4i, 0 − 4i,
or briefly ±4i. The Euler solution atoms are e0x cos(4x), e0x sin(4x). The general solution is
y = c1 cos(4x) + c2 sin(4x), because e0x = 1.

(c) y′′′′ + 16y′′ = 0 has characteristic equation r4 + 4r2 = 0 which factors into r2(r2 + 16) = 0
having root list 0, 0, 0± 4i. The Euler solution atoms are e0x, xe0x, e0x cos(4x), e0x sin(4x). Then
the general solution is y = c1 + c2x + c3 cos(4x) + c4 sin(4x).

(d) y′′ + 16y = 0, y(0) = 1, y′(0) = −1 defines a particular solution y. The usual arbitrary
constants c1, c2 are determined by the initial conditions. From part (b), y = c1 cos(4x)+c2 sin(4x).
Then y′ = −4c1 sin(4x) + 4c2 cos(4x). Initial conditions y(0) = 1, y′(0) = −1 imply the equations
c1 cos(0) + c2 sin(0) = 1,−4c1 sin(0) + 4c2 cos(0) = −1. Using cos(0) = 1 and sin(0) = 0 simplifies
the equations to c1 = 1 and 4c2 = −1. Then the particular solution is y = c1 cos(4x)+c2 sin(4x) =
cos(4x)− 1

4 sin(4x).

(e) y′′′′ + 9y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1 is solved like part (d). First,
the characteristic equation r4 + 9r2 = 0 is factored into r2(r2 + 9) = 0 to find the root list
0, 0, 0 ± 3i. The Euler solution atoms are e0x, xe0x, e0x cos(3x), e0x sin(3x), which implies the
general solution y = c1 + c2x + c3 cos(3x) + c4 sin(3x). We have to find the derivatives of y:
y′ = c2−3c3 sin(3x)+3c4 cos(3x), y′′ = −9c3 cos(3x)−9c4 sin(3x), y′′′ = 27c3 sin(3x)−27c4 cos(3x).
The initial conditions give four equations in four unknowns c1, c2, c3, c4:

c1 + c2(0) + c3 cos(0) + c4 sin(0) = 0,
c2 − 3c3 sin(0) + 3c4 cos(0) = 0,
− 9c3 cos(0) − 9c4 sin(0) = 1,

27c3 sin(0) − 27c4 cos(0) = 1,

which has invertible coefficient matrix




1 0 1 0
0 1 0 3
0 0 −9 0
0 0 0 −27


 and right side vector




0
0
1
1


. The

solution is c1 = c2 = 1/9, c3 = −1/9, c4 = −1/27. Then the particular solution is y = c1 + c2x +
c3 cos(3x) + c4 sin(3x) = 1

9 + 1
9x− 1

9 cos(3x)− 1
27 sin(3x)

(f) The characteristic equation is (r − 2)2(r2 − 4) = 0. Then (r − 2)3(r + 2) = 0 with root list
2, 2, 2,−2 and Euler atoms e2x, xe2x, x2e2x, e−2x. The general solution is a linear combination of
these four atoms.

(g) The characteristic equation is (r−1)2(r2−1)((r+2)2+4) = 0. The root list is 1, 1, 1,−1,−2±
2i with Euler atoms ex, xex, x2ex, e−x, e−2x cos(2x), e−2x sin(2x). The general solution is a linear
combination of these six atoms.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0,−1, 2, 2, 3 +
4i, 3−4i. Then the Euler solution atoms are e0x, xe0x, x2e0x, e−x, e2x, xe2x, e3x cos(4x), e3x sin(4x).
The general solution is a linear combination of these eight atoms.
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Sample Quiz 8, Problem 2. Laplace Theory

Laplace theory implements the method of quadrature for higher or-
der differential equations, linear systems of differential equations, and
certain partial differential equations.

Laplace’s method solves differential equations.

The Problem. Solve by table methods or Laplace’s method.

(a) Forward table. Find L(f(t)) for f(t) = te2t + 2t sin(3t) + 3e−t cos(4t).

(b) Backward table. Find f(t) for

L(f(t)) =
16

s2 + 4
+

s + 1

s2 − 2s + 10
+

2

s2 + 16
.

(c) Solve the initial value problem x′′(t) + 256x(t) = 1, x(0) = 1, x′(0) = 0.

Solution (a).

L(f(t)) = L(te2t + 2t sin(3t) + 3e−t cos(4t))
= L(te2t) + 2L(t sin(3t)) + 3L(e−t cos(4t)) Linearity

= − d
dsL(e2t)− 2 d

dsL(sin(3t)) + 3L(e−t cos(4t)) Differentiation rule

= − d
dsL(e2t)− 2 d

dsL(sin(3t)) + 3 L(cos(4t))|s=s+1 Shift rule

= − d
ds

1
s−2 − 2 d

ds
3

s2+9
+ 3 s

s2+16

∣∣∣
s=s+1

Forward table

= 1
(s−2)2 + 12s

(s2+9)2
+ 3 s+1

(s+1)2+16
Calculus

Solution (b).

L(f(t)) = 16
s2+4

+ s+1
s2−2s+10

+ 2
s2+16

= 8 2
s2+4

+ s+1
(s−1)2+9

+ 1
2

4
s2+16

Prep for backward table

= 8L(sin 2t) + s+1
(s−1)2+9

+ 1
2L(sin 4t) backward table

= 8L(sin 2t) + s+2
s2+9

∣∣∣
s=s−1

+ 1
2L(sin 4t) shift rule

= 8L(sin 2t) + L(cos 3t + 2
3 sin 3t)

∣∣∣
s=s−1

+ 1
2L(sin 4t) backward table

= 8L(sin 2t) + L(et cos 3t + et 23 sin 3t) + 1
2L(sin 4t) shift rule

= L(8 sin 2t) + et cos 3t + et 23 sin 3t + 1
2 sin 4t) Linearity

f(t) = 8 sin 2t + et cos 3t + et 23 sin 3t + 1
2 sin 4t Lerch’s cancel rule

Solution (c).

L(x′′(t) + 256x(t)) = L(1) L acts like matrix mult
sL(x′)− x′(0) + 256L(x) = L(1) Parts rule
s(sL(x)− x(0))− x′(0) + 256L(x) = L(1) Parts rule
s2L(x)− s + 256L(x) = L(1) Use x(0) = 1, x′(0) = 0
(s2 + 256)L(x) = s + L(1) Collect L(x) left

L(x) = s+L(1)
(s2+256)

Isolate L(x) left

L(x) = s+1/s
(s2+256)

Forward table

L(x) = s2+1
s(s2+256)

Algebra

L(x) = A
s + Bs+C

s2+256
Partial fractions

L(x) = AL(1) + BL(cos 16t) + C
16L(sin 16t) Backward table

L(x) = L(A + B cos 16t + C
16 sin 16t) Linearity

x(t) = A + B cos 16t + C
16 sin 16t Lerch’s rule
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The partial fraction problem remains:

s2 + 1

s(s2 + 256)
=

A

s
+

Bs + C

s2 + 256

This problem is solved by clearing the fractions, then swapping sides of the equation, to obtain

A(s2 + 256) + (Bs + C)(s) = s2 + 1.

Substitute three values for s to find 3 equations in 3 unknowns A,B,C:

s = 0 256A = 1
s = 1 257A + B + C = 2
s = −1 257A + B − C = 2

Then A = 1/256, B = 255/256, C = 0 and finally

x(t) = A + B cos 16t +
C

16
sin 16t =

1 + 255 cos 16t

256

Answer Checks

# Sample quiz 8

# answer check problem 2(a)

f:=t*exp(2*t)+2*t*sin(3*t)+3*exp(-t)*cos(4*t);

with(inttrans): # load laplace package

laplace(f,t,s);

# The last two fractions simplify to 3(s+1)/((s+1)^2+16).

# answer check problem 2(b)

F:=16/(s^2+4)+(s+1)/(s^2-2*s+10)+2/(s^2+16);

invlaplace(F,s,t);

# answer check problem 2(c)

de:=diff(x(t),t,t)+256*x(t)=1;ic:=x(0)=1,D(x)(0)=0;

dsolve([de,ic],x(t));

# answer check problem 2(c), partial fractions

convert((s^2+1)/(s*(s^2+256)),parfrac,s);

The output appears on the next page
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(3)(3)

> > 

> > 

> > 
> > 

> > 

(1)(1)

> > 

> > 

(4)(4)

(5)(5)

> > 

(6)(6)

> > 

> > 

> > 

> > 

(7)(7)

(2)(2)

> > 

> > 

# Sample quiz 11
# answer check problem 2(a)
f:=t*exp(2*t)+2*t*sin(3*t)+3*exp(­t)*cos(4*t);

with(inttrans): # load laplace package
laplace(f,t,s) assuming s::real;

# The last two fractions simplify to 3(s+1)/((s+1)^2+16).
# answer check problem 2(b)
F:=16/(s^2+4)+(s+1)/(s^2­2*s+10)+2/(s^2+16);

invlaplace(F,s,t);

# answer check problem 2(c)
de:=diff(x(t),t,t)+256*x(t)=1;ic:=x(0)=1,D(x)(0)=0;

dsolve([de,ic],x(t));

# answer check problem 2(c), partial fractions
convert((s^2+1)/(s*(s^2+256)),parfrac,s);
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Sample Quiz 9

Extra Credit Problem 1. Piecewise Continuous Inputs

Consider a passenger SUV on a one-day trip from Salt Lake City to Pine Bluffs, Wyoming, on
the Nebraska border. The route is I-80 E, 471 miles through Utah and Wyoming. Google maps
estimates 6 hours and 52 minutes hours driving time. The table below shows the distances, time,
road segment and average speed with total trip time 7 hours and 42 minutes. Cities enroute
reduce the freeway speed by 10 mph, the trip time effect not shown in the table.

Miles Minutes Speed mph Road Segment Posted limit mph

18.1 20 54.3 Parley’s Walmart to Kimball 65

11.3 12 56.3 Kimball to Wanship 65− 55

9.1 13 42 Wanship to Coalville 70

5.7 7 48.9 Coalville to Echo Dam 70

16.5 18 55 Echo Dam to 75 mph sign 70

39 36 65 75 mph sign to Evanston 75

308 269 68.7 Evanston to Laramie 75

50.6 50 61.2 Laramie to Cheyenne 75

43 37 69.7 Cheyenne to Pine bluffs 75

The velocity function for the SUV is approximated by

Vpc(t) =





Speed mph Time interval minutes Road segment

54.3 0 < t < 20 Parley’s Walmart to Kimball
56.3 20 < t < 32 Kimball to Wanship
42.0 32 < t < 45 Wanship to Coalville
48.9 45 < t < 52 Coalville to Echo Dam
55.0 52 < t < 70 Echo Dam to 75 mph sign
65.0 70 < t < 106 75 mph sign to Evanston
68.7 106 < t < 375 Evanston to Laramie
61.2 375 < t < 425 Laramie to Cheyenne
69.7 425 < t < 462 Cheyenne to Pine bluffs
0.00 462 < t <∞ SUV stopped

The velocity function Vpc(t) is piecewise continuous, because it has the general form

f(t) =





f1(t) t1 < t < t2
f2(t) t2 < t < t3

...
...

fn(t) tn < t < tn+1

where functions f1, f2, . . . , fn are continuous on the whole real line −∞ < t <∞. We don’t
define f(t) at division points, because of many possible ways to make the definition. As long as
these values are not used, then it will make no difference. Both right and left hand limits exist
at a division point. For Laplace theory, we like the definition f(tk) = limh→0+ f(tk + h), which
makes the function right-continuous.

The Problem. The SUV travels from t = 0 to t = 462
60 = 7.7 hours. The odometer trip

meter reading x(t) is in miles (assume x(0) = 0). The function Vpc(t) is an approximation to the
speedometer reading. Laplace’s method can solve the approximation model

dx

dt
= Vpc(60t), x(0) = 0, x in miles, t in hours,

1



obtaining x(t) =
∫ t
0 Vpc(60w)dw, the same result as the method of quadrature. Show the details.

Then display the piecewise linear continuous trip meter reading x(t).

Solution.

Method of Quadrature. The meaning of the differential equation is that x′(t) is piecewise
continuous. We want x(t) to be continuous, because it is the odometer trip meter reading. But
x′(t) cannot be continuous, if we require dx

dt = Vpc(60t), because the right side is piecewise defined
and discontinuous at division points.

Theorem (Fundamental Theorem of Calculus)
If f ′(x) is piecewise continuous and f(x) is continuous on a ≤ x ≤ b, then

∫ b
a f ′(x)dx = f(b)− f(a).

The theorem implies that the method of quadrature works for the equation x′(t) = Vpc(60t). The
quadrature method gives the correct answer

x(t) =

∫ t

0
Vpc(60w)dw.

Another plan is to split x′(t) = Vpc(60t) into 10 simple equations, x′ = 54.3, x(0) = 0 on 0 ≤ t < 20
being the first equation. The next equation is x′ = 56.3, x(20) = x0, on 20 < t < 32. To make x(t)
continuous, we must choose x0 = 1086, which is the value at the division point t = 20 assumed by
the first problem (x′ = 54.3, x(0) = 0 on 0 ≤ t < 20). This tedious process has to be continued for
all 10 segments. The result is that x(t) is piecewise linear between division points.

Laplace’s Method. The piecewise continuous input Vpc(60t) is of exponential order, because it
is zero after t = 462/60. Laplace theory says it has a Laplace transform L(Vpc(60t)). Assuming a
continuous solution x(t), with x′(t) piecewise continuous, then the equation to be satisfied is

sL(x(t))− x(0) = L(x′(t)) = L(Vpc(60t)).

The Laplace integral theorem implies

L(x(t)) =
1

s
L(Vpc(60t)) = L

(∫ t

0
Vpc(60w)dw

)
.

Lerch’s theorem then implies that the symbol L cancel from each side, giving the odometer trip meter
reading in terms of the integral of the piecewise continuous input Vpc(60t):

x(t) =

∫ t

0
Vpc(60w)dw.

We’ll use technology to program and evaluate the integral, even though it can be done by hand. The
plan is to plot the trip meter reading, then comment on the slow and fast segments of the route,
by using a clever plot involving the average speed. The last display is the piecewise linear trip meter
reading x(t).

Maple

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.3, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

plot(X(t),t=0..480/60); # Almost a straight line.

Average Speed

Define the average value of a function f(w) on a ≤ w ≤ b by 1
b−a

∫ b
a f(w)dw. Then the average

speed in the example is ∫ 462/60
0 Vpc(60w)dw

462/60
= 65.14956710.
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A Clever Plot

An average driver would try to maintain 65.15 mph. The clever plot will create a graphic of x(t)−65.15t
on interval 0 ≤ t ≤ T1, where T1 is the 471 mile trip time at 65.15 mph.

# Maple code

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.3, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

AVEspeed:=X(462/60)/(462/60); # AVEspeed = 65.14956710 mph

T1:=solve(AVEspeed*t=471,t); # T1 = 7.229518491 hours

plot(X(t)-AVEspeed*t,t=0..T1);

We see from the graphic that segments of the road cause a slowdown of up to 15 mph, but for a brief
interval it is possible to exceed the average speed, due to a 75 mph speed limit.

# Maple code for piecewise linear display

X:=t->int(Xpc(60*w),w=0..t);

convert(X(t),piecewise,t):evalf(%,4);

Trip meter at time t =





0.0 t ≤ 0.0
54.30 t t ≤ 0.3333
56.30 t− 0.6667 t ≤ 0.53
42.0 t + 6.960 t ≤ 0.75
48.90 t + 1.785 t ≤ 0.8667
55.0 t− 3.502 t ≤ 1.167
65.0 t− 15.17 t ≤ 1.767
68.70 t− 21.70 t ≤ 6.25
61.20 t + 25.17 t ≤ 7.083
69.70 t− 35.04 t ≤ 7.7
501.7 7.7 < t

3



Sample Quiz 11

Background. Switches and Impulses

Laplace’s method solves differential equations. It is the preferred
method for solving equations containing switches or impulses.

Unit Step Define u(t− a) =

{
1 t ≥ a,
0 t < a.

. It is a switch, turned on at t = a.

Ramp Define ramp(t − a) = (t − a)u(t − a) =

{
t− a t ≥ a,
0 t < a.

, whose graph shape is

a continuous ramp at 45-degree incline starting at t = a.

Unit Pulse Define pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise

= u(t−a)−u(t−b). The switch is ON

at time t = a and then OFF at time t = b.

Impulse of a Force

Define the impulse of an applied force F (t) on time interval a ≤ t ≤ b by the equation

Impulse of F =

∫ b

a
F (t)dt =

(∫ b
a F (t)dt

b− a

)
(b− a) = Average Force × Duration Time.

Dirac Unit Impulse

A Dirac impulse acts like a hammer hit, a brief injection of energy into a system. It is a special
idealization of a real hammer hit, in which only the impulse of the force is deemed important,
and not its magnitude nor duration.

Define the Dirac Unit Impulse by the equation δ(t − a) =
du

dt
(t − a), where u(t − a) is the

unit step. Symbol δ makes sense only under an integral sign, and the integral in question must be
a generalized Riemann integral (definition pending), with new evaluation rules. Symbol δ is an
abbreviation like etc or e.g., because it abbreviates a paragraph of descriptive text.

• Symbol Mδ(t− a) represents an ideal impulse of magnitude M at time t = a. Value M is the
change in momentum, but Mδ(t−a) contains no detail about the applied force or the duraction.
A common force approximation for a hammer hit of very small duration 2h and impulse M is
Dirac’s approximation

Fh(t) =
M

2h
pulse(t, a− h, a+ h).

• Symbol δ is not manipulated as an ordinary function. It is a special modeling tool with rules for
application and rules for algebraic manipulation.

THEOREM (Second Shifting Theorem). Let f(t) and g(t) be piecewise continuous and of expo-
nential order. Then for a ≥ 0,

e−as L(f(t)) = L
(
f(t)u(t)|t:=t−a

)
,

L(g(t)u(t− a)) = e−as L
(
g(t)|t:=t+a

)
.

1



Problem 1. Solve the following by Laplace methods.

(a) Forward table. Compute the Laplace integral for the unit step, ramp and pulse, in these
special cases:

(1) L(10u(t− π)) (2) L(ramp(t− 2π)), (3) L(10pulse(t, 3, 5)).

(b) Backward table. Find f(t) in the following special cases.

(1) L(f) =
5e−3s

s
(2) L(f) =

e−4s

s2
(3) L(f) =

5

s

(
e−2s − e−3s

)
.

2



Problem 2. Solve the following Dirac impulse problems.

(c) Dirac Impulse and the Second Shifting theorem. Solve the following forward table problems.

(1) L(10δ(t− π)), (2) L(5δ(t− 1) + 10δ(t− 2) + 15δ(t− 3)), (2) L((t− π)δ(t− π)).

The sum of Dirac impulses in (2) is called an impulse train.

3



Solutions

Solution (a). The forward second shifting theorem applies.

(1) L(10u(t − π)) = L (g(t)u(t− a)) where g(t) = 10 and a = π. Then L(10u(t − π)) =

L (g(t)u(t− a)) = e−as L
(
g(t)|t=t+a

)
= e−πs L

(
10|t=t+π

)
= 10

s e
−πs.

(2) L(ramp(t− 2π)) = L((t− 2π)u(t− 2π)) = L
(
tu(t)|t=t−2π)

)
= e−2πs L(t) = 1

s2
e−2πs.

(3) L(10pulse(t, 3, 5)) = 10L(u(t− 3)− u(t− 5)) = 10
s (e3s − e−5s).

Solution (b). Presence of an exponential e−as signals step u(t− a) in the answer, the main tool
bing the backward second shifting theorem.

(1) L(f) = 5e−3s

s = e−3s 5s = e−3s L(5) = L(5u(t)|t=t+3) = L(5u(t − 3)). Lerch implies f =
5u(t− 3).

(2) L(f) = e−4s

s2
= e−as

L (t) where a = 4. Then L(f) = e−as
L (t) = L( tu(t)|t=t−a) = L((t− 4)u(t−

4)) = L(ramp(t− 4)). Lerch implies f = ramp(t− 4).

(3) L(f) = e−2s 5s − e−3s 5s = L(5u(t − 2)) − L(5u(t − 3)) = L(5pulse(t, 2, 3)). Lerch implies
f = 5pulse(t, 2, 3).

Solution (c). The main result for Dirac unit impulse δ is the equation

∫ ∞

)
g(t)δ(t− a)dt = g(a),

valid for g(t) continuous on 0 ≤ t <∞. When g(t) = e−st, then the equation implies the Laplace
formula L(δ(t− a)) = e−as.

(1) L(10δ(t − π)) = 10e−πs, by the displayed equation with g(t) = 10e−st, or by using linearity
and the formula L(δ(t− a)) = e−as.

(2) L(5δ(t − 1) + 10δ(t − 2) + 15δ(t − 3)) = 5L(δ(t − 1)) + 10L(δ(t − 2)) + 15L(δ(t − 3)) =
5e−s + 10e−2s + 15e−3s.

(3) L((t − π)δ(t − 2π)) =
∫∞
0 (t − π)estδ(t − 2π)dt = (t− π)e−st

∣∣
t=2π = πe−2πs, using g(t) =

(t− π)e−st and a = 2π in the equation.
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Problem 3. Experiment to Find the Transfer Function h(t)

Consider a second order problem

ax′′(t) + bx′(t) + cx(t) = f(t)

which by Laplace theory has a particular solution solution defined as the convolution of the
transfer function h(t) with the input f(t),

xp(t) =

∫ t

0
f(w)h(t− w)dw.

Examined in this problem is another way to find h(t), which is the system response to a Dirac
unit impulse with zero data. Then h(t) is the solution of

ah′′(t) + bh′(t) + ch(t) = δ(t), h(0) = h′(0) = 0.

The Problem. Assume a, b, c are constants and define g(t) =
∫ t
0 h(w)dw.

(a) Show that g(0) = g′(0) = 0, which means g has zero data.

(b) Let u(t) be the unit step. Argue that g is the solution of

ag′′(t) + bg′(t) + cg(t) = u(t), g(0) = g′(0) = 0.

The fundamental theorem of calculus says that h(t) = g′(t). Therefore, to compute the
transfer function h(t), find the response g(t) to the unit step with zero data, followed by
computing the derivative g′(t), which equals h(t).

The experimental impact is important. Turning on a switch creates a unit step, generally
easier than designing a hammer hit.

(c) Illustrate the method for finding the transfer function h(t) in the special case

x′′(t) + 2x′(t) + 5x(t) = f(t).

Solutions

(a) g(0) =
∫ 0
0 h(w)dw = 0, g′(0) = h′(0) = 0.

(b) Let u(t) be the unit step. Initial data was decided in part (a). The Laplace applied to
ag′′(t) + bg′(t) + cg(t) = u(t) gives (as2 + bs+ c)L(g) = L(u(t)). Then L(g) = L(h(t))L(u(t)) =

L(h(t))1s L
(∫ t

0 h(r)du
)

by the integral theorem. Lerch’s theorem then says g(t) =
∫ t
0 h(r)dr.

(c) For equation x′′(t) + 2x′(t) + 5x(t) = f(t) we replace x(t) by g(t) and f(t) by the unit step
u(t), then solve g′′(t)+2g′(t)+5g(t) = u(t), obtaining L(g) = 1

s
1

s2+2s+5
= L(15− 1

10e
−t(2 cos(2t)+

sin(2t))). Then g(t) = 1
5 − 1

10e
−t(2 ∗ cos(2t) + sin(2t)) and h(t) = g′(t) = 1

2e
−t sin(2t).
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Sample Quiz 12

Problem 1.

Flow through each pipe is f gallons per unit time.

Each tank has constant volume V .

Symbols x1(t) to x7(t) are the salt amounts in tanks
T1 to T7, respectively.

The differential equations are obtained by the classical balance law, which says that the rate of
change in salt amount is the rate in minus the rate out. Individual rates in/out are of the form
(flow rate)(salt concentration), where flow rate f has units volume per unit time and xi(t)/V is
the concentration = amount/volume.

x′1(t) =
f

V
(x2(t) + x3(t) + x4(t) + x5(t) + x6(t) + x7(t)− 6x1(t))

x′2(t) =
f

V
(x1(t)− x2(t)) ,

x′3(t) =
f

V
(x1(t)− x3(t)) ,

x′4(t) =
f

V
(x1(t)− x4(t)) ,

x′5(t) =
f

V
(x1(t)− x5(t)) ,

x′6(t) =
f

V
(x1(t)− x6(t)) ,

x′7(t) =
f

V
(x1(t)− x7(t)) .

Problem 1(a). Change variables t = V r/f to obtain the new system

dx1

dr
= x2 + x3 + x4 + x5 + x6 + x7 − 6x1

dx2

dr
= x1 − x2,

dx3

dr
= x1 − x3,

dx4

dr
= x1 − x4,

dx5

dr
= x1 − x5,

dx6

dr
= x1 − x6,

dx7

dr
= x1 − x7.

Solution 1(a): Because
dx(t)

dt
=
dx

dr

dr

dt
=
dx

dr

f

V
, then fraction f/V cancels resulting in the new

system.
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Problem 1(b). Formulate the equations in 1(a) in the system form
d

dr
~u = A~u.

Answer:

A =




−6 1 1 1 1 1 1
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1




, ~u =




x1

x2

x3

x4

x5

x6

x7




Problem 1(c). Find the eigenvalues of A.

Answer: λ = 0,−1,−1,−1,−1,−1,−7

Solution 1(c).

Let D = |A− λI|. Replace −1− λ by symbol u. Then

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−5 + u 1 1 1 1 1 1
1 u 0 0 0 0 0
1 0 u 0 0 0 0
1 0 0 u 0 0 0
1 0 0 0 u 0 0
1 0 0 0 0 u 0
1 0 0 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Add each of rows 2, 3, 4, 5, 6 to row 1. Then 1+u is a common factor of row 1 and the determinant
multiply rule implies

D = (1 + u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1
1 u 0 0 0 0 0
1 0 u 0 0 0 0
1 0 0 u 0 0 0
1 0 0 0 u 0 0
1 0 0 0 0 u 0
1 0 0 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cofactor expansion along the last row, plus induction, gives the answer D = (u + 1)(u− 6)u5 =
(−λ)(−λ− 7)(−λ− 1)5 with roots λ = 0,−7,−1,−1,−1,−1,−1.

Problem 1(d). Find the eigenvectors of A.

Solution 1(d).

The root λ = −1 causes us to solve (A+ I)~v = ~0, which has coefficient matrix

B =




−5 1 1 1 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0




, with rref(B) =




1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.
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There are 2 lead variables and 5 free variables, hence 5 basis vectors



0
−1

1
0
0
0
0




,




0
−1

0
1
0
0
0




,




0
−1

0
0
1
0
0




,




0
−1

0
0
0
1
0




,




0
−1

0
0
0
0
1




.

The eigenvector for λ = 0 has all components equal to 1. This fact is found from the equation
(A− (0)I)~v = ~0, which has coefficient matrix A.

The eigenvector for λ = −7 has first component −6 and the remaining equal to 1. The task begins
with the equation (A− (−7)I)~v = ~0, which has coefficient matrix




7− 6 1 1 1 1 1 1
1 7− 1 0 0 0 0 0
1 0 7− 1 0 0 0 0
1 0 0 7− 1 0 0 0
1 0 0 0 7− 1 0 0
1 0 0 0 0 7− 1 0
1 0 0 0 0 0 7− 1




=




1 1 1 1 1 1 1
1 6 0 0 0 0 0
1 0 6 0 0 0 0
1 0 0 6 0 0 0
1 0 0 0 6 0 0
1 0 0 0 0 6 0
1 0 0 0 0 0 6




The eigenvectors for λ = 0 and λ = −7 are respectively



1
1
1
1
1
1
1




,




−6
1
1
1
1
1
1




.

Problem 1(e). Solve the differential equation
d~u

dr
= A~u by the eigenanalysis method.

Three Methods for Solving d
dt~u(t) = A~u(t)

• Eigenanalysis Method. The eigenpairs of matrix A are required. The matrix A must
be diagonalizable, meaning there are n eigenpairs (λ1, ~v1), (λ2, ~v2), . . . , (λn, ~vn). The main
theorem says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + · · ·+ cne
λnt~vn.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination
of the Euler solution atoms f1, . . . , fn found from the roots of the characteristic equation
|A− λI| = 0. The vectors ~d1, . . . , ~dn in the linear combination

~u(t) = f1(t)~d1 + f2(t)~u2 + · · ·+ fn(t)~dn

are determined by the explicit formula

< ~d1 | ~d2 | · · · | ~dn >=< ~u0 |A~u0 | · · · |An−1~u0 >
(
W (0)T

)−1
,

where W (t) is the Wronskian matrix of atoms f1, . . . , fn and ~u0 is the initial data.
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Solution 1(e).

The eigenvectors corresponding to λ = 0,−7,−1,−1,−1,−1,−1 are respectively




1
1
1
1
1
1
1




,




−6
1
1
1
1
1
1




,




0
−1

1
0
0
0
0




,




0
−1

0
1
0
0
0




,




0
−1

0
0
1
0
0




,




0
−1

0
0
0
1
0




,




0
−1

0
0
0
0
1




.

The Eigenanalysis method then implies the solution ~x(r) of
d~x

dr
= A~x is given for arbitrary

constants c1, . . . , c7 by the expression

c1e
0r




1
1
1
1
1
1
1




+c2e
−7r




−6
1
1
1
1
1
1




+c3e
−r




0
−1

1
0
0
0
0




+c4e
−r




0
−1

0
1
0
0
0




+c5e
−r




0
−1

0
0
1
0
0




+c6e
−r




0
−1

0
0
0
1
0




+c7e
−r




0
−1

0
0
0
0
1




.
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Problem 2. Home Heating

Consider a typical home with attic, basement and insulated main floor.

Heating Assumptions and Variables

• It is usual to surround the main living area with insulation, but the attic area has walls and
ceiling without insulation.

• The walls and floor in the basement are insulated by earth.

• The basement ceiling is insulated by air space in the joists, a layer of flooring on the main
floor and a layer of drywall in the basement.

The changing temperatures in the three levels is modeled by Newton’s cooling law and the variables

z(t) = Temperature in the attic,
y(t) = Temperature in the main living area,
x(t) = Temperature in the basement,
t = Time in hours.

A typical mathematical model is the set of equations

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

Problem 2(a). Formulate the system of differential equations as a matrix system d
dt~u(t) =

A~u(t) +~b. Show details.

Answer. ~u =



x(t)
y(t)
z(t)


 , ~b =




45
2

20 + 35
4

105
4


 , A =




−1 1
2 0

1
2 −1 1

4

0 1
4 −1




Solution Details.

Expand the right side of the system as follows.

x′ =
45

2
− x

2
+
y

2
− x

2
,

y′ =
x

2
− y

2
+

35

4
− y

4
+
z

4
− y

4
+ 20

z′ =
y

4
− z

4
+

105

4
− 3z

4
.
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Then collect on the variables:

x′ = −x+
y

2
+

45

2
,

y′ =
x

2
− y +

z

4
+ 20 +

35

4

z′ =
y

4
− z +

105

4
.

The right side of this system can be written as A~u +~b. Vector ~b is obtained by formally setting
x = y = z = 0 on the right. This justifies the answer given.

The matrix A has columns equal to the partial derivatives ∂x, ∂y, ∂z of the right side of the scalar
system. This idea is important, because it allows the computation of matrix A without any of
the preceding details.

Problem 2(b). The heating problem has an equilibrium solution ~up(t) which is a constant
vector of temperatures for the three floors. It is formally found by setting d

dt~u(t) = 0, and then

~up = −A−1~b. Justify the algebra and explicitly find ~up(t).

Answer 2(b). ~up(t) = −A−1~b =




620
11

745
11

475
11


 =




56.36
67.73
43.18


.

Solution Details.

The equation upon setting the derivative equal to zero becomes ~0 = A~u+~b which implies A~u = −~b
and finally ~u = −A−1~b.

The calculation is done by technology. The maple code:

A:=<-1,1/2,0|1/2,-1,1/4|0,1/4,-1>^+; b:=<45/2,20+35/4,105/4>;

-A^(-1).b; evalf(%);

The solution can also be obtained by hand from the augmented matrix of A and −~b, using the
linear algebra toolkit of swap, combination and multiply.

Problem 2(c). The homogeneous problem is d
dt~u(t) = A~u(t). It can be solved by a variety of

methods, three major methods enumerated below. Choose a method and solve for ~x(t).

Answer 2(c): The homogenous scalar general solution is

x1(t) = −1

2
c1e
−t + 2c2e

−at + 2c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + c2e

−at + c3e
−bt.

Three Methods for Solving ~u′ = A~u

• Eigenanalysis Method. Three eigenpairs of matrix A are required. The matrix A must be
diagonalizable, meaning there are 3 eigenpairs (λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The main theorem
says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination of
the Euler solution atoms found from the roots of the characteristic equation |A − λI| = 0.
The vectors in the linear combination are determined by an explicit formula.
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Solution Details for Problem 2(c)

.

The roots of the characteristic polynomial are used in all three methods. This is the polynomial
equation |A− λI| = 0, having n roots real and complex, for an n× n matrix A.

Subtract λ from the diagonal of A and form the determinant. Then cofactor expansion on row 3
gives

|A− λI| =

∣∣∣∣∣∣∣∣∣

−1− λ 1
2 0

1
2 −1− λ 1

4

0 1
4 −1− λ

∣∣∣∣∣∣∣∣∣
= (−1− λ)

(
− 1

16
+ (−1− λ)2 − 1

4

)
.

The roots are −1,−a,−b where a = 1 +
√

5/4 = 1.56, b = 1 −
√

5/4 = 0.44. The three roots are
distinct, real and negative.

Eigenanalysis Method

The eigenpairs must be found, in order to assemble the solution vector ~u(t). Technology can be
used to find the answers, which are


−1,



−1

2
0
1





 ,


−a,




2

−
√

5
1





 ,


−b,




2√
5
1





 .

Without technology, there are three homogeneous problems to solve of the form B~v = ~0, for
eigenvector ~v. Enumerated, they are:

Case λ = −1. Then B = A+ I =




0 1
2 0

1
2 0 1

4

0 1
4 0




Case λ = −a. Then B = A+ aI =




√
5

4
1
2 0

1
2

√
5

4
1
4

0 1
4

√
5

4




Case λ = −b. Then B = A+ bI =




−
√

5
4

1
2 0

1
2 −

√
5

4
1
4

0 1
4 −

√
5

4




In each case, the system B~v = ~0 is solved using the last frame algorithm (there is in each case
one free variable). The eigenvector reported is the partial derivative of the general solution on
the invented symbol t1, which was assigned to the free variable.

Application of the Theorem

System ~u′ = A~u is solved in the diagonalizable case in terms of the eigenpairs of A, denoted as
(λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The solution of ~u′ = A~u is given by the formula

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

In the present case, the solution is

~u(t) = c1e
−t



−1

2
0
1


+ c2e

−at




2

−
√

5
1


+ c3e

−bt




2√
5
1


 .
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Symbols c1, c2, c3 in the solution are arbitrary constants, uniquely determined by initial conditions.
In scalar form, the solution is

x1(t) = −1

2
c1e
−t + 2c2e

−at + 2c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + c2e

−at + c3e
−bt.

Laplace Transform Method

The Laplace Method for solving ~u′(t) = A~u(t) is based upon transforming all differential
equations into the frequency domain. Then time variable t no longer appears, being replaced
by the frequency variable s.

The homogeneous system of differential equations is

x′ = −x+
y

2
,

y′ =
x

2
− y +

z

4
+ 20

z′ =
y

4
− z.

Transforming to the s-domain uses the parts rule L(f ′(t)) = sL(f(t)− f(0). Then

sL(x)− x(0) = −L(x) +
1

2
L(y),

sL(y)− y(0) =
1

2
L(x)− L(y) +

1

4
L(z) + 20

sL(z)− z(0) =
1

4
L(y)− L(z).

View these equations as linear algebraic equations for the symbols L(x),L(y),L(z). Move terms
left and right to re-write the scalar equations as a matrix system



s+ 1 −1

2 0
1
2 s+ 1 −1

4
0 −1

4 s+ 1






L(x)

L(y)

L(z)


 =



x(0)
y(0)
z(0)


 .

The system is solved by inverting the coefficient matrix C on the left, using the adjugate formula
C−1 = adj(C)/|C|. Write the answer as

C−1(s) =



s+ 1 −1

2 0
1
2 s+ 1 −1

4
0 −1

4 s+ 1




−1

=
1

∆(s)




s2 + 2s+ 15
16

s+1
2

1
8

s+1
2 (s+ 1)2 s+1

4

1
8

s+1
4 s2 + 2s+ 3

4


 .

Symbol ∆(s) = (s+ 1)(s+ a)(s+ b) is the determinant of C(s). Then


L(x)

L(y)

L(z)


 = C−1(s)



x(0)
y(0)
z(0)


 .

Backward table steps require solving nine equations of the form L(f(t)) = p(s)
∆(s) . A computer

algebra system reduces the effort, able to write C−1(s) = L(Φ(t)), using symbols f1 = e−t, f2 =
e−at, f3 = e−bt, where

Φ(t) =




1
5f1 + 2

5f2 + 2
5f3

1√
5
(f3 − f2) 1

5f2 + 1
5f3 − 2

5f1

1√
5

(f3 − f2) 1
2f2 + 1

2f3
1

2
√

5
(f3 − f2)

1
5f2 + 1

5f3 − 2
5f1

1
2
√

5
(f3 − f2) 4

5f1 + 1
10f2 + 1

10f3



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Then L(~u(t)) = L(Φ(t)~u(0)) implies by Lerch’s cancelation law the formula



x(t)

y(t)

z(t)


 =




1
5f1 + 2

5f2 + 2
5f3

1√
5
(f3 − f2) 1

5f2 + 1
5f3 − 2

5f1

1√
5

(f3 − f2) 1
2f2 + 1

2f3
1

2
√

5
(f3 − f2)

1
5f2 + 1

5f3 − 2
5f1

1
2
√

5
(f3 − f2) 4

5f1 + 1
10f2 + 1

10f3







x(0)

y(0)

z(0)


 .

The Resolvent Method

The scalar system solved above is exactly

(sI −A)L(~u(t)) = ~u(0), I =




1 0 0
0 1 0
0 0 1


 , A =



−1 1

2 0
1
2 −1 1

4
0 1

4 −1


 , ~u(t) =



x(t)
y(t)
z(t)


 .

The system (sI − A)L(~u(t)) = ~u(0) is called the resolvent equation. The inverse of the
coefficient matrix, (sI−A)−1, is called the resolvent matrix, because L(~u(t)) = (sI−A)−1~u(0).
If these statements make sense to you, then please use them to solve problems. Otherwise, ignore
the information, and solve problems in the same manner as outlined earlier.

Engineering and Laplace Transforms

Both mechanical engineering and electrical engineering have rich support for Laplace theory.
Using Laplace theory has the advantage that many persons can help you through difficult times.
Independent persons prefer to choose the method from their own private toolbox.

Cayley-Hamilton-Ziebur Method

The Ziebur Lemma implies that the solution of the system ~u′(t) = A~u(t) is given by the formula

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt.

THEOREM. Vectors ~d1, ~d2, ~d3 are uniquely determined by initial condition ~u(0), which is a
column vector of prescribed constants, by the matrix equation.

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1

Symbol W (t) is the Wronskian matrix of the three Euler solution atoms. Notation 〈 ~A| ~B|~C〉 is
the augmented matrix of the three columns vectors ~A, ~B, ~C.

Illustration. For the heating example, with a = 1 +
√

5/4 = 1.56, b = 1−
√

5/4 = 0.44, the
Euler solution atoms are e−t, e−at, e−bt. The Wronskian matrix is

W (t) =




e−t e−at e−bt

−e−t −ae−at −be−bt
e−t a2e−at b2e−bt


 , W (0) =




1 1 1
−1 −a −b

1 a2 b2


 .

Then (W (0)T )−1 =




−11
5

8
5 − 2

5

√
5 8

5 + 2
5

√
5

−32
5

16
5 − 2

5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5


 .

For initial state ~u(0) =




1
0
0


, 〈~u(0)|A~u(0)|A2~u(0)〉 =




1 −1 5/4

0 1/2 −1

0 0 1/8


. Then

~u(t) = 〈~d1|~d2|~d3〉




e−t

e−at

e−bt


 =




1 −1 5/4

0 1/2 −1

0 0 1/8







−11
5

8
5 − 2

5

√
5 8

5 + 2
5

√
5

−32
5

16
5 − 2

5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5







e−t

e−at

e−bt



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For general initial state ~u(0) =



c1

c2

c3


,

〈~u(0)|A~u(0)|A2~u(0)〉 =




c1 −c1 + 1
2c2

5
4 c1 − c2 + 1

8c3

c2
1
2c1 − c2 + 1

4c3 −c1 + 21
16c2 − 1

2c3

c3
1
4c2 − c3

1
8c1 − 1

2c2 + 17
16c3


 .

Then ~u(t) is this matrix times
(
W (0)T

)−1
times the column vector of atoms e−t, e−at, e−bt.

Details for the Theorem

The idea for finding the three vectors is differentiation of Ziebur’s equation, two times, to get
three equations

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

~u′(t) = −~d1e
−t − a~d2e

−at − b~d3e
−bt,

~u′′(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

Identities ~u′(t) = A~u(t) and ~u′′(t) = A~u′(t) = AA~u(t) imply that the left sides are simplified to

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

A~u(t) = −~d1e
−t − a~d2e

−at − b~d3e
−bt,

A2~u(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

The critical idea is to substitute t = 0, which because of e0 = 1 gives the following three equations
for unknowns ~d1, ~d2, ~d3:

~u(0) = ~d1 + ~d2 + ~d3,

A~u(0) = −~d1 − a~d2 − b~d3,

A2~u(0) = ~d1 + a2~d2 + b2~d3.

How to solve these vector equations for unknowns ~d1, ~d2, ~d3? To begin, solve the scalar system




1 1 1
−1 −a −b

1 a2 b2






x
y
z


 =



b1
b2
b3




where variables x, y, z are the first components of ~d1, ~d2, ~d3, and similarly, b1, b2, b3 are the first
components of vector ~u(0), A~u(0), A2~u(0):

x = ~d1 · ~v,

y = ~d2 · ~v,

z = ~d3 · ~v,

b1 = ~u(0) · ~v,
b2 = A~u(0) · ~v,
b3 = A2~u(0) · ~v,

~v =




1
0
0


.

The equations also apply to find the second components, using ~v =




0
1
0


, then the third com-

ponents using ~v =




0
0
1


. The three systems of equations can be written as one huge matrix

equation: 


1 1 1
−1 −a −b

1 a2 b2


 〈~d1|~d2|~d3〉T = 〈~u(0)|A~u(0)|A2~u(0)〉T
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Taking the transpose across the equation gives

〈~d1|~d2|~d3〉




1 1 1
−1 −a −b

1 a2 b2




T

= 〈~u(0)|A~u(0)|A2~u(0)〉

Finally, invert the matrix W (0)T and multiply across the equation on the right to obtain

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉







1 1 1
−1 −a −b

1 a2 b2




T


−1

This is exactly the equation reported in the theorem,

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1

It has been observed that if f1 = e−t, f2 = e−at, f3 = e−bt are replaced by a new basis of solutions
such that W (0) = I, then ~d1 = ~u(0), ~d2 = A~u(0), ~d3 = A2~u(0). The resulting solution in this case
is

~u(t) = f1(t)~u(0) + f2(t)A~u(0) + f3(t)A2~u(0).

Which Method is the Best?

The eigenanalysis method seems to be the best, because it is a method for simplifying coordinates,
hence a shorter answer. Except in the case of complex roots. Or in the case that the matrix A fails
to be diagonalizable. In practice, the method used to solve the equation ~u′(t) = A~u(t) has to be
tuned to the expected application. Dynamical systems are an important example. For dynamical
systems, the actual solution is less important than its formula, which is a linear combination of
Euler solution atoms, according to Cayley-Hamilton-Ziebur.

Laplace theory provides a simple formula for the solution of ~u′(t) = A~u(t). It has the form

~u(t) = Φ(t)~u(0).

The matrix Φ(t) in the Laplace formula is computed from L(Φ(t)) = (sI − A)−1. Although this
computation is nontrivial by hand, computer algebra system automation is possible.

Matrix Φ(t) is called the Exponential Matrix, denoted by eAt. Computer algebra system Maple

computes Φ(t) by the command LinearAlgebra[MatrixExponential](A,t) . Both Matlab and

Mathematica support symbolic computation of the matrix exponential Φ(t).
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