
Sample Quiz 8

Sample Quiz 8, Problem 1. RLC-Circuit

The Problem. Suppose E = 100 sin(20t), L = 5 H, R = 250 Ω and C = 0.002 F. The
model for the charge Q(t) is LQ′′ +RQ′ + 1

C
Q = E(t).

(a) Differentiate the charge model and substitute I = dQ
dt

to obtain the current model
5I ′′ + 250I ′ + 500I = 2000 cos(20t).

(b) Find the reactance S = ωL− 1
ωC

, where ω = 20 is the input frequency, the natural
frequency of E = 100 sin(20t) and E ′ = 2000 cos(20t).

(c) Substitute I = A cos(20t) + B sin(20t) into the current model (a) and solve for A =
−12
109
, B = 40

109
. Then the steady-state current is

I(t) = A cos(20t) +B sin(20t) =
−12 cos(20t) + 40 sin(20t)

109
.

(d) Write the answer in (c) in phase-amplitude form I = I0 sin(20t− δ) with I0 > 0 and
δ ≥ 0. Then compute the time lag δ/ω.

Answers: I0 = 4√
109

, δ = arctan(3/10), δ/ω = 0.01457.

References

Course slides on Electric Circuits. Edwards-Penney Differential Equations and Boundary Value
Problems, sections 3.4, 3.5, 3.6, 3.7.
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Solutions to Problem 1

Problem 1(a) Start with 5Q′′ + 250Q′ + 500Q = 100 sin(20t). Differentiate across to get
5Q′′′ + 250Q′′ + 500Q′ = 2000 cos(20t). Change Q′ to I.

Problem 1(b) S = (20)(5)− 1/(20 ∗ 0.002) = 75

Problem 1(c) It helps to use the differential equation u′′ + 400u = 0 satisfied by both u1 =
cos(20t) and u2 = sin(20t). Functions u1, u2 are Euler solution atoms, hence independent. Along
the solution path, we’ll use u′1 = −20 sin(20t) = −20u2 and u′2 = 20 cos(20t) = 20u1. The
arithmetic is simplified by dividing the equation first by 5. We then substitute I = Au1 +Bu2.

I ′′ + 50I ′ + 100I = 400 sin(20t)
A(u′′1 + 50u′1 + 100u1) +B(u′′2 + 50u′2 + 100u2) = 400 sin(20t)
A(−400u1 + 50(−20u2) + 100u1) +B(−400u2 + 50(20u1) + 100u2) = 400 sin(20t)
(−400A+ 100A+ 1000B)u1 + (−1000A− 400B + 100B)u2 = 400u2

By independence of u1, u2, coefficients of u1, u2 on each side of the equation must match. The
linear algebra property is called unique representation of linear combinations. This implies the
2× 2 system of equations

−300A + 1000B = 0,
−1000A − 300B = 400.

The solution by Cramer’s rule (the easiest method) is A = −12/109, B = 40/109. Then the
steady-state current is

I(t) = A cos(20t) +B sin(20t) =
−12 cos(20t) + 40 sin(20t)

109
.

The steady-state current is defined to be the sum of those terms in the general solution of the
differential equation that remain after all terms that limit to zero at t = ∞ have been removed.
The logic is that only these terms contribute to a graphic or to a numerical calculation after
enough time has passed (as t→∞).

Problem 1(d) Let cos(δ) = B/I0, sin(δ) = −A/I0, I0 =
√
A2 +B2. Use the trig identity

sin(a− b) = sin(a) cos(b)− cos(a) sin(b)

to rearrange the current formula as follows:

I(t) = A cos(20t) +B sin(20t) = I0(sin(20t) cos(δ)− sin(δ) cos(20t)) = I0 sin(20t− δ).

Compute I0 =
√
A2 +B2 = 4√

109
. Compute tan(δ) = sin δ

cos δ = −A/B = 12/40. Then δ =

arctan(12/40) and finally δ/ω = arctan(3/10)/20 = 0.01457.

Another method, using Edwards-Penney Section 3.7: Compute the impedance Z =
√
R2 + S2 =√

2502 + 752 =
√

68125 = 25
√

109 and then I0 = E0/Z = 4/
√

109. The phase δ = arctan(S/R) =

arctan(75/250) = arctan(3/10). Then the time lag is δ/ω = arctan(0.3)
20 = 0.01457.
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Sample Quiz 8, Problem 2. Picard’s Theorem and RLC-Circuit Models

Picard-Lindelöf Theorem. Let ~f(x, ~y) be defined for

|x−x0| ≤ h, ‖~y− ~y0‖ ≤ k, with ~f and ∂ ~f
∂~y continuous. Then

for some constant H, 0 < H < h, the problem{
~y ′(x) = ~f(x, ~y(x)), |x− x0| < H,
~y(x0) = ~y0

has a unique solution ~y(x) defined on the smaller interval
|x− x0| < H. Emile Picard

The Problem. The second order problem
u′′ + 2u′ + 5u = 60 sin(20x),
u(0) = 1,
u′(0) = 0

(1)

is an RLC-circuit charge model, in which the variables have been changed. The variables
are time x in seconds and charge u(x) in coulombs. Coefficients in the equation represent
an inductor L = 1 H, a resistor R = 2 Ω, a capacitor C = 0.2 F and a voltage input
E(x) = 60 sin(20x).

The several parts below detail how to convert the scalar initial value problem into a vector
problem, to which Picard’s vector theorem applies. Please fill in the missing details.

(a) The conversion uses the position-velocity substitution y1 = u(x), y2 = u′(x), where
y1, y2 are the invented components of vector ~y. Then the initial data u(0) = 1, u′(0) = 0
converts to the vector initial data

~y(0) =

(
1
0

)
.

(b) Differentiate the equations y1 = u(x), y2 = u′(x) in order to find the scalar system of two
differential equations, known as a dynamical system:

y′1 = y2, y′2 = −5y1 − 2y2 + 60 sin(20x).

(c) The derivative of vector function ~y(x) is written ~y ′(x) or d~y
dx(x). It is obtained by compo-

nentwise differentiation: ~y ′(x) =

(
y′1
y′2

)
. The vector differential equation model of scalar

system (??) is 
~y ′(x) =

(
0 1
−5 −2

)
~y(x) +

(
0

60 sin(20x)

)
,

~y(0) =

(
1
0

)
.

(2)

(d) System (??) fits the hypothesis of Picard’s theorem, using symbols

~f(x, ~y) =

(
0 1
−5 −2

)
~y(x) +

(
0

60 sin(20x)

)
, ~y0 =

(
1
0

)
.

The components of vector function ~f are continuously differentiable in variables x, y1, y2,

therefore ~f and ∂ ~f
∂~y are continuous.

3



Solutions to Problem 2

(a) ~y(0) =

(
y1(0)
y2(0)

)
=

(
u(0)
u′(0)

)
=

(
1
0

)
.

(b) Differentiate, y′1 = u′(x) = y2 and y′2 = u′′(x) . Isolate u′′ left in the equation u′′+2u′+5u =
60 sin(20x), then reduce y′2 = u′′(x) into y′2 = −2u′− 5u+ 60 sin(20x) = −2y2− 5y1 + 60 sin(20x).

(c) Initial data ~y(0) =

(
1
0

)
was derived in part (a). The differential equation is derived from

the scalar dynamical system in part (b), as follows.

~y ′ =

(
y′1
y′2

)

=

(
y2

−5y1 − 2y2 + 60 sin(20x)

)

=

(
y2

−5y1 − 2y2

)
+

(
0

60 sin(20x)

)

=

(
0 1
−5 −2

)(
y1
y2

)
+

(
0

60 sin(20x)

)

=

(
0 1
−5 −2

)
~y +

(
0

60 sin(20x)

)

(d) From calculus, polynomials and trigonometric function sine are infinitely differentiable.

Therefore, in each of the variables x, y1, y2 the components of ~f , which are just the right sides of
the dynamical system equations of part (b), are also infinitely differentiable.
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Sample Quiz 8, Problem 3. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations
of order N , for example equations like

y′′ + 16y = 0, y′′′′ + 4y′′ = 0,
d5y

dx5
+ 2y′′′ + y′′ = 0.

1. Find the N th degree characteristic equation by Euler’s substitution y = erx. For
instance, y′′+16y = 0 has characteristic equation r2+16 = 0, a polynomial equation
of degree N = 2.

2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic
equation. List the N roots according to multiplicity.

3. Construct N distinct Euler solution atoms from the list of roots. Then the general
solution of the differential equation is a linear combination of the Euler solution atoms
with arbitrary coefficients c1, c2, c3, . . ..

The solution space S of the differential equation is given by

S = span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms e0x, xe0x, x2e0x or 1, x, x2.

Three roots 0, 0, 2 produce three atoms e0x, xe0x, e2x.

Two complex conjugate roots 2± 3i produce two atoms e2x cos(3x), e2x sin(3x).1

Four complex conjugate roots listed according to multiplicity as 2±3i, 2±3i produce four
atoms e2x cos(3x), e2x sin(3x), xe2x cos(3x), xe2x sin(3x).

Seven roots 1, 1, 3, 3, 3,±3i produce seven atoms ex, xex, e3x, xe3x, x2e3x, cos(3x), sin(3x).

Two conjugate complex roots a±bi (b > 0) arising from roots of (r−a)2+b2 = 0 produce
two atoms eax cos(bx), eax sin(bx).

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

(a) y′′ + 16y′ = 0

(b) y′′ + 16y = 0

(c) y′′′′ + 16y′′ = 0

(d) y′′ + 16y = 0, y(0) = 1, y′(0) = −1

(e) y′′′′ + 9y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

(f) The characteristic equation is (r − 2)2(r2 − 4) = 0.

(g) The characteristic equation is (r − 1)2(r2 − 1)((r + 2)2 + 4) = 0.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0,−1, 2, 2, 3 +
4i, 3− 4i.

1The Reason: cos(3x) = 1
2
e3xi + 1

2
e−3xi by Euler’s formula eiθ = cos θ + i sin θ. Then e2x cos(3x) = 1

2
e2x+3xi +

1
2
e2x−3xi is a linear combination of exponentials erx where r is a root of the characteristic equation. Euler’s

substitution implies erx is a solution, so by superposition, so also is e2x cos(3x). Similar for e2x sin(3x).
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Solutions to Problem 3

(a) y′′+16y′ = 0 upon substitution of y = erx becomes (r2+16r)erx = 0. Cancel erx to find the
characteristic equation r2 + 16r = 0. It factors into r(r + 16) = 0, then the two roots r make
the list r = 0,−16. The Euler solution atoms for these roots are e0x, e−16x. Report the general
solution y = c1e

0x + c2e
−16x = c1 + c2e

−16x, where symbols c1, c2 stand for arbitrary constants.

(b) y′′ + 16y = 0 has characteristic equation r2 + 16 = 0. Because a quadratic equation
(r − a)2 + b2 = 0 has roots r = a ± bi, then the root list for r2 + 16 = 0 is 0 + 4i, 0 − 4i,
or briefly ±4i. The Euler solution atoms are e0x cos(4x), e0x sin(4x). The general solution is
y = c1 cos(4x) + c2 sin(4x), because e0x = 1.

(c) y′′′′ + 16y′′ = 0 has characteristic equation r4 + 4r2 = 0 which factors into r2(r2 + 16) = 0
having root list 0, 0, 0± 4i. The Euler solution atoms are e0x, xe0x, e0x cos(4x), e0x sin(4x). Then
the general solution is y = c1 + c2x+ c3 cos(4x) + c4 sin(4x).

(d) y′′ + 16y = 0, y(0) = 1, y′(0) = −1 defines a particular solution y. The usual arbitrary
constants c1, c2 are determined by the initial conditions. From part (b), y = c1 cos(4x)+c2 sin(4x).
Then y′ = −4c1 sin(4x) + 4c2 cos(4x). Initial conditions y(0) = 1, y′(0) = −1 imply the equations
c1 cos(0) + c2 sin(0) = 1,−4c1 sin(0) + 4c2 cos(0) = −1. Using cos(0) = 1 and sin(0) = 0 simplifies
the equations to c1 = 1 and 4c2 = −1. Then the particular solution is y = c1 cos(4x)+c2 sin(4x) =
cos(4x)− 1

4 sin(4x).

(e) y′′′′ + 9y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1 is solved like part (d). First,
the characteristic equation r4 + 9r2 = 0 is factored into r2(r2 + 9) = 0 to find the root list
0, 0, 0 ± 3i. The Euler solution atoms are e0x, xe0x, e0x cos(3x), e0x sin(3x), which implies the
general solution y = c1 + c2x + c3 cos(3x) + c4 sin(3x). We have to find the derivatives of y:
y′ = c2−3c3 sin(3x)+3c4 cos(3x), y′′ = −9c3 cos(3x)−9c4 sin(3x), y′′′ = 27c3 sin(3x)−27c4 cos(3x).
The initial conditions give four equations in four unknowns c1, c2, c3, c4:

c1 + c2(0) + c3 cos(0) + c4 sin(0) = 0,
c2 − 3c3 sin(0) + 3c4 cos(0) = 0,
− 9c3 cos(0) − 9c4 sin(0) = 1,

27c3 sin(0) − 27c4 cos(0) = 1,

which has invertible coefficient matrix


1 0 1 0
0 1 0 3
0 0 −9 0
0 0 0 −27

 and right side vector


0
0
1
1

. The

solution is c1 = c2 = 1/9, c3 = −1/9, c4 = −1/27. Then the particular solution is y = c1 + c2x+
c3 cos(3x) + c4 sin(3x) = 1

9 + 1
9x−

1
9 cos(3x)− 1

27 sin(3x)

(f) The characteristic equation is (r − 2)2(r2 − 4) = 0. Then (r − 2)3(r + 2) = 0 with root list
2, 2, 2,−2 and Euler atoms e2x, xe2x, x2e2x, e−2x. The general solution is a linear combination of
these four atoms.

(g) The characteristic equation is (r−1)2(r2−1)((r+2)2+4) = 0. The root list is 1, 1, 1,−1,−2±
2i with Euler atoms ex, xex, x2ex, e−x, e−2x cos(2x), e−2x sin(2x). The general solution is a linear
combination of these six atoms.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0, 0,−1, 2, 2, 3 +
4i, 3−4i. Then the Euler solution atoms are e0x, xe0x, x2e0x, e−x, e2x, xe2x, e3x cos(4x), e3x sin(4x).
The general solution is a linear combination of these eight atoms.
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