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Simple Harmonic Motion

Consider the spring-mass system of Figure 1, where x measures the signed distance from
the equilibrium position of the mass. The spring is assumed to exert a force under both
compression and elongation. Such springs are commonly used in automotive suspension
systems, notably coil springs and leaf springs. In the case of coil springs, it is assumed that
there is space between the coils, which allows the spring to exert bidirectional forces.
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Figure 1. An undamped spring-mass system, showing compression, equilibrium and
elongation of the spring with corresponding positions of the massm.



Hooke’s law

The linear restoring force F exerted by a spring is proportional to the
signed elongation X. The summary:

F = −kX.

The number k is called Hooke’s constant for the spring. In the model of Figure 1, X =
x(t) and k > 0. The minus sign accounts for the action of the force: the spring tries
to restore the mass to the equilibrium state, so the vector force is directed toward the
equilibrium position x = 0.



Newton’s Second Law

Specialized to the model in Figure 1, Newton’s second law says:

The force F exerted by a mass m attached to a spring is F = ma

where a = d2x/dt2 is the acceleration of the mass.

The weight W = mg is defined in terms of the gravitational constant g = 32 ft/s2,
9.8 m/s2 or 980 cm/s2 where the mass m is given respectively in slugs, kilograms or
grams. The weight is the force due to gravity and it has the appropriate units for a force:
pounds in the case of the fps system of units.



Method of Force Competition

Hooke’s law F = −kx(t) and Newton’s second law F = mx′′(t) give two indepen-
dent equations for the force acting on the system. Equating competing forces implies that
the signed displacement x(t) satisfies the free vibration equation

mx′′(t) + kx(t) = 0.

It is also called the harmonic oscillator, especially in its equivalent form

x′′(t) + ω2x(t) = 0, ω2 =
k

m
.

In this context, ω is the natural frequency of the free vibration. The harmonic oscillator
is said to describe a simple harmonic motion x(t), known by Euler’s constant-coefficient
recipe to have the form

x(t) = c1 cosωt+ c2 sinωt.



Visualization of Harmonic Motion

A simple harmonic motion can be obtained graphically by means of the experiment shown
in Figure 2, in which an undamped spring-mass system has an attached pen that writes on
a moving paper chart. The chart produces the simple harmonic motion

x(t) = c1 cosωt+ c2 sinωt

or equivalently
x(t) = A cos(ωt− φ).
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Figure 2. A moving paper chart records the vertical motion of a mass on a spring by

means of an attached pen.



Phase-Amplitude Conversion
Given a simple harmonic motion x(t) = c1 cosωt + c2 sinωt, as in Figure 3, define
amplitudeA and phase angle α by the formulas

A =
√
c21 + c22, c1 = A cosα and c2 = A sinα.

Then the simple harmonic motion has the phase-amplitude form

x(t) = A cos(ωt− α).(1)

To directly obtain (1) from trigonometry, use the trigonometric identity cos(a− b) = cos a cos b+ sin a sin b
with a = ωt and b = α. It is known from trigonometry that x(t) has period 2π/ω and phase shift α/ω. A
full period is called a cycle and a half-period a semicycle. The frequency ω/(2π) is the number of complete
cycles per second, or the reciprocal of the period.
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Figure 3. Simple harmonic oscillation x(t) = A cos(ωt− α), showing the period
2π/ω, the phase shift α/ω and the amplitudeA.



The Simple Pendulum
A pendulum is constructed from a thin massless wire or rod of length L and a body of
mass m, as in Figure 4. Along the circular arc traveled by the mass, the velocity is
ds/dt where s = Lθ(t) is arclength. The acceleration is Lθ′′(t). Newton’s sec-
ond law for the force along this arc is F = mLθ′′(t). Another relation for the force
can be found by resolving the vector gravitational force m~g into its normal and tangen-
tial components. By trigonometry, the tangential component gives a second force equation
F = −mg sin θ(t). Equating competing forces and cancelingm results in the pendu-
lum equation

θ′′(t) +
g

L
sin θ(t) = 0.(2)
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Figure 4. A simple pendulum



The Linearized Pendulum

The approximation sinu ≈ u, valid for small angles u, is applied to the pendulum
equation

θ′′(t) +
g

L
sin θ(t) = 0.

The result is the linearized pendulum

θ′′(t) +
g

L
θ(t) = 0.(3)

This equation is indistinguishable from the classical harmonic oscillator, except for variable
names. The characteristic solution is

θ(t) = A cos(ωt− α), ω2 = g/L.



The Physical Pendulum
The compound pendulum or physical pendulum is a rigid body of total massm having
center of massC which is suspended from a fixed originO – see Figure 5.
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Figure 5. The physical pendulum
Derivation. The vector ~r from O to C has magnitude d > 0. Torque equals ~r× ~G, magnitude ‖~r‖‖ ~G‖ sin(θ),
~r = position, ~G = gravity force (mass x acceleration) making angle θ with ~r. The restoring torque has
magnitude F1 = −mgd sin θ. Newton’s second law gives a second force equation F2 = Iθ′′(t) where I is the
torque of the rigid body about O. Force competition F1 = F2 results in the compound pendulum

θ′′(t) +
mgd

I
sin θ(t) = 0.(4)

Using sinu ≈ u gives the linearized compound pendulum

θ′′(t) + ω2θ(t) = 0, ω =

√
mgd

I
.(5)



The Swinging Rod
As depicted in Figure 6, a swinging rod is a special case of the compound pendulum.

Figure 6. The swinging rod

Derivation. The center of mass distance is d = L/2. The torque about the origin at the uppermost end of the rod
is I = mL2/3. It is a substantial calculation, using the parallel axis theorem, adding the torque Icm = mL2

12
about the center of mass (cm) and md2, where d = L/2. Then mgd/I = 3mgL/2mL2 = 3g/2L. Then use
models (4) and (5).

Applying (4) gives the swinging rod model

θ′′(t) +
3g

2L
sin θ(t) = 0(6)

and applying (5) gives the linearized swinging rod model

θ′′(t) + ω2θ(t) = 0, ω =

√
3g

2L
.(7)



The Torsional Pendulum
A model for a balance wheel in a watch, a gavanometer or a Cavendish torsional balance
is the torsional pendulum, which is a rigid body suspended by a wire – see Figure 7. The
twisted wire exerts a restoring force F = −κθ0 when the body is rotated through angle
θ0. There is no small angle restriction on this restoring force, because it acts in the spirit
of Hooke’s law like a linear spring restoring force. The model uses the Newton’s second
law force relation F = Iθ′′0 (t), as in the physical pendulum, but the restoring force is
F = −κθ0, giving the torsional pendulum

θ′′0 (t) + ω2θ0(t) = 0, ω =

√
κ

I
.(8)

θ0

Figure 7. The torsional pendulum, a model for a balance wheel in a watch. The wheel
rotates angle θ0 about the vertical axis, which acts as a spring, exerting torque I against

the rotation.



Shockless Auto
An auto loaded with several occupants is supported by four coil springs, as in Figure 8, but
all of the shock absorbers are worn out. The simplistic model mx′′(t) + kx(t) = 0
will be applied. The plan is to estimate the number of seconds it takes for one complete
oscillation. This is the time between two consecutive bottom–outs of the auto.

Figure 8. A model for a car on four springs
Application
Assume the car plus occupants has mass 1350 Kg. Let each coil spring have Hooke’s constant k = 20000
Newtons per meter. The load is divided among the four springs equally, so each spring supports m = 1350/4
Kg. We will find the natural frequency of vibration ω. Then the number of seconds for one complete oscillation
is the period T = 2π/ω seconds. The oscillation model for one spring is

1350

4
x′′(t) + 20000x(t) = 0.

In the harmonic oscillator form x′′+ω2x = 0, ω2 =
20000(4)

1350 = 59.26 and therefore ω = 7.70, T = 2π/ω =
0.82 seconds.



Rolling Wheel on a Spring
A wheel of total mass m and radius R is attached at its center to a spring of Hooke’s
constant k, as in Figure 9. The wheel rolls without slipping.
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Figure 9. A rolling wheel attached to a spring.
Modeling. Let x(t) be the elongation of the spring from equilibrium, x > 0 correspond-
ing to the wheel rolling to the right and x < 0 corresponding to the wheel rolling to the
left.
If the wheel slides frictionless, then the model is mx′′(t) + kx(t) = 0. But a wheel
that rolls without slipping has inertia, and consideration of this physical difference will be
shown to give the rolling wheel equation

mx′′(t) +
2

3
kx(t) = 0.(9)



Derivation of the Rolling Wheel Model
The derivation is based upon the energy conservation law

Kinetic + Potential = constant.

The kinetic energy T is the sum of two energies, T1 = 1

2
mv2 for translation and T2 =

1

2
Iω2 for the rolling wheel, whose inertia is I = 1

2
mR2. The velocity is v = Rω =

x′(t). Algebra gives T = T1 + T2 = 3

4
mv2. The potential energy isK = 1

2
kx2 for

a spring of Hooke’s constant k. Application of the energy conservation law T +K = c
gives the equation 3

4
m(x′(t))2 + 1

2
k(x(t))2 = c. Differentiate this equation on t to

obtain 3

2
mx′(t)x′′(t) + kx(t)x′(t) = 0, then cancel x′(t) to give

mx′′(t) +
2

3
kx(t) = 0.


