Separable Differential Equations

- Separable Equation and the Separable Form
- Compute \boldsymbol{F} and \boldsymbol{G} in Relation $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$
- Theorem: Separability Test
- Non-Separability Tests: Test I and Test II
- Illustration $\boldsymbol{y}^{\prime}=\boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}$.
- Variables-Separable Method
- Equilibrium Solutions
- Non-Equilibrium Solutions
* preparation for quadrature
* method of quadrature
* Explicit and Implicit Solutions
- The General Solution of $\boldsymbol{y}^{\prime}=2 \boldsymbol{x}(\boldsymbol{y}-3)$
- Answer Checks: Explicit Solution and Implicit Solution.

Definition (Separable Equation). An equation $y^{\prime}=f(x, y)$ is called separable provided there exists functions $\boldsymbol{F}(\boldsymbol{x})$ and $\boldsymbol{G}(\boldsymbol{y})$ such that

$$
f(x, y)=F(x) G(y)
$$

Definition (Separated Form of a Separable Equation). The equation

$$
\frac{y^{\prime}}{G(y)}=F(x) .
$$

is called the separated form. It is obtained from the separable equation $\boldsymbol{y}^{\prime}=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ by dividing by $\boldsymbol{G}(\boldsymbol{y})$.
Such an equation is said to be prepared for quadrature, because the left side is independent of \boldsymbol{x} and the right side is independent of $\boldsymbol{y}, \boldsymbol{y}^{\prime}$.

Finding a Separable Form

The algorithm supplied here determines F and G such that $f(x, y)=F(x) G(y)$. The algorithm also applies to prove that an equation is not separable.

Algorithm. Given differential equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, invent values $\boldsymbol{x}_{0}, \boldsymbol{y}_{0}$ such that $\boldsymbol{f}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \neq 0$. Define $\boldsymbol{F}, \boldsymbol{G}$ by the formulas

$$
\begin{equation*}
F(x)=\frac{f\left(x, y_{0}\right)}{f\left(x_{0}, y_{0}\right)}, \quad G(y)=f\left(x_{0}, y\right) \tag{1}
\end{equation*}
$$

Because $\boldsymbol{f}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \neq \mathbf{0}$, then (1) makes sense. Test I infra implies the following test.

Theorem 1 (Separability Test)

Let \boldsymbol{F} and \boldsymbol{G} be defined by (1). Multiply $\boldsymbol{F} \boldsymbol{G}$. Then
(a) If $\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, then $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is separable.
(b) If $F(x) G(y) \neq f(x, y)$, then $y^{\prime}=f(x, y)$ is not separable.

Example 1: Let $f(x, y)=6 x y+8 y-15 x-20$. Find F and G in Relation $f(x, y)=F(x) G(y)$.
Answer: $F=3 x+4, G=2 y-5$.
Start with $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ and substitute $\boldsymbol{y}=\mathbf{0}$ (use another value for \boldsymbol{y}, like $y=1$, if this fails). Then $f(x, 0)=\left.(6 x y+8 y-15 x-20)\right|_{y=0}=-15 x-$ 20 which implies $F(x) G(0)=-15 x-20$. Assume $G(0)$ is the constant 1 , then $F(x)=-15 x-20$.
Repeat with $x=0$ in the relation $F(x) G(y)=6 x y+8 y-15 x-20$ to get $\boldsymbol{F}(0) \boldsymbol{G}(y)=8 y-20$. Because $\boldsymbol{F}(x)=-15 x-20$ then $\boldsymbol{F}(0)=-20$. The previous relation becomes $(-20) G(y)=8 y-20$ or $G(y)=-\frac{2}{5} y+1$.
We don't know by this analysis if \boldsymbol{F} and \boldsymbol{G} actually work, that is, if $\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ multiplies out to give $f(x, y)=6 x y+8 y-15 x-20$. So we check it:

$$
\begin{aligned}
F(x) G(y) & =(-15 x-20)\left(-\frac{2}{5} y+1\right) \\
& =(-3 x-4)(-2 y+5) \quad \text { (cancel common } 5) \\
& =(3 x+4)(2 y-5) \quad \text { (adjust minus sign) } \\
& =6 x y+8 y-15 x-20 \\
& =f(x, y)
\end{aligned}
$$

Therefore it works. We can adjust \boldsymbol{F} and \boldsymbol{G} by constants that cancel, so we choose $\boldsymbol{F}=$ $3 x+4$ and $G=2 y-5$, as discovered in the check above.

Example 2: Assume $f(x, y)=6 x y+8 y-15 x-20$. Find F and G in Relation $f(x, y)=F(x) G(y)$
We determine without factorization talent the formula $f(x, y)=(3 x+4)(2 y-5)$. Invent values $x_{0}=0, y_{0}=0$, chosen to make $f\left(x_{0}, y_{0}\right)=-20$ nonzero. Define

$$
\begin{aligned}
& F(x)=\frac{f\left(x, y_{0}\right)}{f\left(x_{0}, y_{0}\right)}=\frac{0+0-15 x-20}{-20}=\frac{3}{4} x+1 \\
& G(y)=f\left(x_{0}, y\right)=0+8 y-0-20=8 y-20
\end{aligned}
$$

Then $f(x, y)=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ because

$$
F(x) G(y)=\left(\frac{3}{4} x+1\right)(8 y-20)=6 x y+8 y-15 x-20
$$

Because $\boldsymbol{c} F(x)(1 / c) G(y)=f(x, y)$ for any $c \neq 0$, we can choose $c=4$ to get a simpler fraction-free factorization using the new definitions $F=3 x+4, G=2 y-5$. The final answers:

$$
F=3 x+4, \quad G=2 y-5
$$

Non-Separability Tests

Test I. Equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is not separable provided for some pair of points $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$, $(\boldsymbol{x}, \boldsymbol{y})$ in the domain of \boldsymbol{f}, (2) holds:

$$
\begin{equation*}
f\left(x, y_{0}\right) f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right) f(x, y) \neq 0 \tag{2}
\end{equation*}
$$

Test II. The equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is not separable if either of the following conditions hold:

- $f_{x}(x, y) / f(x, y)$ is non-constant in y or
- $\boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y}) / \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is non-constant in \boldsymbol{x}.

Test I details

Assume $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$, then equation (2) fails because each term on the left side of (2) equals $\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}\left(\boldsymbol{y}_{0}\right) \boldsymbol{F}\left(\boldsymbol{x}_{0}\right) \boldsymbol{G}(\boldsymbol{y})$ for all choices of $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ and $(\boldsymbol{x}, \boldsymbol{y})$ (hence contradiction $0 \neq 0$).

Test II details

Assume $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{F}(\boldsymbol{x}) \boldsymbol{G}(\boldsymbol{y})$ and suppose $\boldsymbol{F}, \boldsymbol{G}$ are sufficiently differentiable. Then

and
$-\frac{f_{y}(x, y)}{f(x, y)}=\frac{G^{\prime}(y)}{G(y)}$ is independent of \boldsymbol{x}.

Illustration

Consider $\boldsymbol{y}^{\prime}=\boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}$.
Test I implies it is not separable, because the left side of the relation is

$$
\begin{aligned}
\text { LHS } & =f(x, 1) f(0, y)-f(0,1) f(x, y) \\
& =(x+1) y^{2}-\left(x y+y^{2}\right) \\
& =x\left(y^{2}-y\right) \\
& \neq 0
\end{aligned}
$$

Test II implies it is not separable, because

$$
\frac{f_{x}}{f}=\frac{1}{x+y}
$$

is not constant as a function of \boldsymbol{y}.

Variables-Separable Method

The method determines two kinds of solution formulas.

Equilibrium Solutions.

They are the constant solutions $y=c$ of $y^{\prime}=f(x, y)$. For any equation, find them by substituting $\boldsymbol{y}=\boldsymbol{c}$ into the differential equation.

Non-Equilibrium Solutions.

For a separable equation

$$
y^{\prime}=F(x) G(y)
$$

a non-equilibrium solution \boldsymbol{y} is a solution with $\boldsymbol{G}(\boldsymbol{y}) \neq 0$. It is found by dividing by $\boldsymbol{G}(\boldsymbol{y})$, then applying the method of quadrature.

Theory of Non-Equilibrium Solutions

A given solution $\boldsymbol{y}(\boldsymbol{x})$ satisfying $\boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x})) \neq \mathbf{0}$ throughout its domain of definition is called a non-equilibrium solution. Then division by $\boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x}))$ is allowed.
The method of quadrature applies to the separated equation $\boldsymbol{y}^{\prime} / \boldsymbol{G}(\boldsymbol{y}(\boldsymbol{x}))=\boldsymbol{F}(\boldsymbol{x})$. Some details:

$$
\begin{aligned}
& \int_{x_{0}}^{x} \frac{y^{\prime}(t) d t}{G(y(t))}=\int_{x_{0}}^{x} F(t) d t \\
& \int_{y_{0}}^{y(x)} \frac{d u}{G(u)}=\int_{x_{0}}^{x} F(t) d t \\
& y(x)=M^{-1}\left(\int_{x_{0}}^{x} F(t) d t\right)
\end{aligned}
$$

Integrate both sides of the separated equation over $\boldsymbol{x}_{0} \leq \boldsymbol{t} \leq \boldsymbol{x}$.

Apply on the left the change of variables $u=$ $\boldsymbol{y}(t)$. Define $y_{0}=\boldsymbol{y}\left(\boldsymbol{x}_{0}\right)$.
Define $M(y)=\int_{y_{0}}^{y} d u / G(u)$. Take inverses to isolate $\boldsymbol{y}(\boldsymbol{x})$.
In practise, the last step with M^{-1} is never done. The preceding formula is called the implicit solution. Some work is done to find algebraically an explicit solution, as is given by \boldsymbol{W}^{-1}.

Explicit and Implicit Solutions

Definition 1 (Explicit Solution)

A solution \boldsymbol{y} of $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is called explicit provided it is given by an equation

$$
\boldsymbol{y}=\text { an expression independent of } \boldsymbol{y}
$$

To elaborate, on the left side must appear exactly the symbol \boldsymbol{y}, followed by an equal sign. Symbols \boldsymbol{y} and $=$ are followed by an expression which does not contain the symbol \boldsymbol{y}.

Definition 2 (Implicit Solution)

A solution of $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is called implicit provided it is not explicit.

Examples

\qquad

- Explicit solutions: $y=1, y=x, y=f(x), y=0, y=-1+x^{2}$
- Implicit Solutions: $2 y=2, y^{2}=x, y+x=0, y=x y^{2}+1, y+1=x^{2}$, $x^{2}+y^{2}=1, F(x, y)=c$

The General Solution of $y^{\prime}=2 x(y-3)$

- The variables-separable method gives equilibrium solutions $\boldsymbol{y}=\boldsymbol{c}$, which are already explicit. In this case, $\boldsymbol{y}=\mathbf{3}$ is an equilibrium solution.
- Because $\boldsymbol{F}=2 \boldsymbol{x}, \boldsymbol{G}=\boldsymbol{y}-3$, then division by \boldsymbol{G} gives the quadrature-prepared equation $\boldsymbol{y}^{\prime} /(\boldsymbol{y}-\mathbf{3})=\mathbf{2 x}$. A quadrature step gives the implicit solution

$$
\ln |y-3|=x^{2}+C
$$

- The non-equilibrium solutions may be left in implicit form, giving the general solution as the list

$$
L_{1}=\left\{y=3, \ln |y-3|=x^{2}+C\right\}
$$

- Algebra can be applied to $\ln |y-3|=x^{2}+C$ to write it as $y=3+k e^{x^{2}}$ where $\boldsymbol{k} \neq 0$. Then general solution L_{1} can be re-written as

$$
L_{2}=\left\{y=3, y=3+k e^{x^{2}}\right\}
$$

List \boldsymbol{L}_{2} can be distilled to the single formula $\boldsymbol{y}=3+\boldsymbol{c} \boldsymbol{e}^{\boldsymbol{x}^{2}}$, but \boldsymbol{L}_{1} has no simpler expression.

Answer Check an Explicit Solution

To answer check $\boldsymbol{y}^{\prime}=\mathbf{1}+\boldsymbol{y}$ with explicit solution $\boldsymbol{y}=-\mathbf{1}+\boldsymbol{c} \boldsymbol{e}^{\boldsymbol{x}}$, expand the left side of the DE and the right side of the DE separately, then compare the two computations.

$$
\mathrm{LHS}=y^{\prime}
$$

$$
=\left(-1+c e^{x}\right)^{\prime}
$$

$$
=0+c e^{x}
$$

$\mathrm{RHS}=1+y$
$=-1+1+c e^{x}$
$=c e^{x}$

Left side of the DE.
Substitute the solution $y=-1+c e^{x}$.
Evaluate.
Right side of the DE.
Substitute the solution $y=-1+c e^{x}$.
Evaluate.

Then LHS $=$ RHS for all symbols. The DE is verified.

Answer Check an Implicit Solution

\qquad
To answer check

$$
y^{\prime}=1+y^{2}
$$

with implicit solution

$$
\arctan (y)=x+c
$$

differentiate the implicit solution equation on \boldsymbol{x}, to produce the differential equation.

$\arctan (y(x))=x+c$	The implicit equation, replacing
	$\boldsymbol{y}(\boldsymbol{x})$.
$\frac{d}{d x} \arctan (\boldsymbol{y}(\boldsymbol{x}))=\frac{d}{d x}(\boldsymbol{x}+\boldsymbol{c})$	Differentiate the previous equation.
$\frac{y^{\prime}(\boldsymbol{x})}{1+(\boldsymbol{y}(\boldsymbol{x}))^{2}}=1+0$	Chain rule applied left.
$\boldsymbol{y}^{\prime}=(1+0)\left(1+\boldsymbol{y}^{2}\right)$	Cross-multiply to isolate \boldsymbol{y}^{\prime} left.
$\boldsymbol{y}^{\prime}=1+\boldsymbol{y}^{2}$	The DE is verified.

