Separable Differential Equations

- Separable Equation and the Separable Form
- ullet Compute F and G in Relation f(x,y)=F(x)G(y)
- Theorem: Separability Test
- Non-Separability Tests: Test I and Test II
- Illustration $y' = xy + y^2$.
- Variables-Separable Method
 - Equilibrium Solutions
 - Non-Equilibrium Solutions
 - * preparation for quadrature
 - * method of quadrature
 - * Explicit and Implicit Solutions
 - The General Solution of y'=2x(y-3)
- Answer Checks: Explicit Solution and Implicit Solution.

Definition (Separable Equation). An equation y'=f(x,y) is called separable provided there exists functions F(x) and G(y) such that

$$f(x,y) = F(x)G(y).$$

Definition (Separated Form of a Separable Equation). The equation

$$rac{y'}{G(y)} = F(x).$$

is called the **separated form**. It is obtained from the separable equation y' = F(x)G(y) by dividing by G(y).

Such an equation is said to be *prepared for quadrature*, because the left side is independent of x and the right side is independent of y, y'.

Finding a Separable Form

The algorithm supplied here determines F and G such that f(x,y) = F(x)G(y). The algorithm also applies to **prove** that an equation is **not separable**.

Algorithm. Given differential equation y' = f(x, y), invent values x_0 , y_0 such that $f(x_0, y_0) \neq 0$. Define F, G by the formulas

(1)
$$F(x) = rac{f(x,y_0)}{f(x_0,y_0)}, \quad G(y) = f(x_0,y).$$

Because $f(x_0, y_0) \neq 0$, then (1) makes sense. Test I *infra* implies the following test.

Theorem 1 (Separability Test)

Let F and G be defined by (1). Multiply FG. Then

- (a) If F(x)G(y)=f(x,y), then y'=f(x,y) is separable.
- (b) If F(x)G(y)
 eq f(x,y), then y' = f(x,y) is not separable.

Example 1: Let f(x,y)=6xy+8y-15x-20. Find F and G in Relation f(x,y)=F(x)G(y).

Answer: F = 3x + 4, G = 2y - 5.

Start with f(x,y)=F(x)G(y) and substitute y=0 (use another value for y, like y=1, if this fails). Then $f(x,0)=(6xy+8y-15x-20)|_{y=0}=-15x-20$ which implies F(x)G(0)=-15x-20. Assume G(0) is the constant 1, then F(x)=-15x-20.

Repeat with x=0 in the relation F(x)G(y)=6xy+8y-15x-20 to get F(0)G(y)=8y-20. Because F(x)=-15x-20 then F(0)=-20. The previous relation becomes (-20)G(y)=8y-20 or $G(y)=-\frac{2}{5}y+1$.

We don't know by this analysis if F and G actually work, that is, if F(x)G(y) multiplies out to give f(x,y)=6xy+8y-15x-20. So we check it:

$$F(x)G(y) = (-15x - 20) \left(-\frac{2}{5}y + 1\right)$$

= $(-3x - 4)(-2y + 5)$ (cancel common 5)
= $(3x + 4)(2y - 5)$ (adjust minus sign)
= $6xy + 8y - 15x - 20$
= $f(x, y)$.

Therefore it works. We can adjust F and G by constants that cancel, so we choose F = 3x + 4 and G = 2y - 5, as discovered in the check above.

Example 2: Assume f(x,y)=6xy+8y-15x-20. Find F and G in Relation f(x,y)=F(x)G(y)

We determine without factorization talent the formula f(x,y)=(3x+4)(2y-5). Invent values $x_0=0$, $y_0=0$, chosen to make $f(x_0,y_0)=-20$ nonzero. Define

$$egin{aligned} F(x) &= rac{f(x,y_0)}{f(x_0,y_0)} &= rac{0+0-15x-20}{-20} &= rac{3}{4}x+1 \ G(y) &= f(x_0,y) &= 0+8y-0-20 &= 8y-20. \end{aligned}$$

Then f(x,y) = F(x)G(y) because

$$F(x)G(y) = \left(rac{3}{4}x + 1
ight)(8y - 20) = 6xy + 8y - 15x - 20.$$

Because cF(x)(1/c)G(y) = f(x,y) for any $c \neq 0$, we can choose c = 4 to get a simpler fraction-free factorization using the new definitions F = 3x + 4, G = 2y - 5. The final answers:

$$F = 3x + 4$$
, $G = 2y - 5$

Non-Separability Tests

Test I. Equation y' = f(x, y) is not separable provided for some pair of points (x_0, y_0) , (x, y) in the domain of f, (2) holds:

(2)
$$f(x,y_0)f(x_0,y) - f(x_0,y_0)f(x,y) \neq 0.$$

Test II. The equation y' = f(x, y) is not separable if either of the following conditions hold:

- $ullet f_x(x,y)/f(x,y)$ is non-constant in y or
- \bullet $f_y(x,y)/f(x,y)$ is non-constant in x.

Test I details

Assume f(x,y) = F(x)G(y), then equation (2) fails because each term on the left side of (2) equals $F(x)G(y_0)F(x_0)G(y)$ for all choices of (x_0,y_0) and (x,y) (hence contradiction $0 \neq 0$).

Test II details

Assume f(x,y)=F(x)G(y) and suppose F,G are sufficiently differentiable. Then

- $ullet rac{f_x(x,y)}{f(x,y)} = rac{F'(x)}{F(x)}$ is independent of y and
- $ullet rac{f_y(x,y)}{f(x,y)} = rac{G'(y)}{G(y)}$ is independent of x.

Illustration

Consider $y' = xy + y^2$.

Test I implies it is not separable, because the left side of the relation is

$$\begin{array}{ll} \text{LHS} &=& f(x,1)f(0,y) - f(0,1)f(x,y) \\ &=& (x+1)y^2 - (xy+y^2) \\ &=& x(y^2-y) \\ &\neq& 0. \end{array}$$

Test II implies it is not separable, because

$$rac{f_x}{f} = rac{1}{x+y}$$

is not constant as a function of y.

Variables-Separable Method

The method determines two kinds of solution formulas.

Equilibrium Solutions.

They are the constant solutions y = c of y' = f(x, y). For any equation, find them by substituting y = c into the differential equation.

Non-Equilibrium Solutions.

For a separable equation

$$y' = F(x)G(y),$$

a non-equilibrium solution y is a solution with $G(y) \neq 0$. It is found by dividing by G(y), then applying the method of quadrature.

Theory of Non-Equilibrium Solutions

A given solution y(x) satisfying $G(y(x)) \neq 0$ throughout its domain of definition is called a non-equilibrium solution. Then division by G(y(x)) is allowed.

The *method of quadrature* applies to the separated equation y'/G(y(x)) = F(x). Some details:

$$\int_{x_0}^x rac{y'(t)dt}{G(y(t))} = \int_{x_0}^x F(t)dt$$
 Integrate both sides of the separated equation over $x_0 \leq t \leq x$.
 $\int_{y_0}^{y(x)} rac{du}{G(u)} = \int_{x_0}^x F(t)dt$ Apply on the left the change of variables $u = y(t)$. Define $y_0 = y(x_0)$.
$$y(x) = M^{-1}\left(\int_{x_0}^x F(t)dt
ight)$$
 Define $M(y) = \int_{y_0}^y du/G(u)$. Take inverses to isolate $y(x)$.

In practise, the last step with M^{-1} is never done. The preceding formula is called the *implicit solution*. Some work is done to find algebraically an *explicit solution*, as is given by W^{-1} .

Explicit and Implicit Solutions

Definition 1 (Explicit Solution)

A solution y of y'=f(x,y) is called **explicit** provided it is given by an equation

y= an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y, followed by an equal sign. Symbols y and = are followed by an expression which does not contain the symbol y.

Definition 2 (Implicit Solution)

A solution of y' = f(x, y) is called **implicit** provided it is not explicit.

Examples

- ullet Explicit solutions: $y=1, y=x, y=f(x), y=0, y=-1+x^2$
- ullet Implicit Solutions: 2y=2, $y^2=x,$ y+x=0, $y=xy^2+1,$ $y+1=x^2,$ $x^2+y^2=1,$ F(x,y)=c

The General Solution of y'=2x(y-3) _

- ullet The variables-separable method gives equilibrium solutions y=c, which are already explicit. In this case, y=3 is an equilibrium solution.
- ullet Because F=2x, G=y-3, then division by G gives the quadrature-prepared equation y'/(y-3)=2x. A quadrature step gives the implicit solution

$$\ln|y-3| = x^2 + C.$$

• The non-equilibrium solutions may be left in *implicit* form, giving the **general solution** as the list

$$L_1 = \{y = 3, \ln |y - 3| = x^2 + C\}.$$

ullet Algebra can be applied to $\ln |y-3| = x^2 + C$ to write it as $y = 3 + ke^{x^2}$ where $k \neq 0$. Then general solution L_1 can be re-written as

$$L_2 = \{y = 3, y = 3 + ke^{x^2}\}.$$

List L_2 can be distilled to the single formula $y=3+ce^{x^2}$, but L_1 has no simpler expression.

Answer Check an Explicit Solution

To answer check y' = 1 + y with explicit solution $y = -1 + ce^x$, expand the left side of the DE and the right side of the DE separately, then compare the two computations.

$$\begin{array}{ll} \mathsf{LHS} = y' & \qquad \qquad \mathsf{Left \ side \ of \ the \ DE.} \\ &= (-1 + ce^x)' & \qquad \mathsf{Substitute \ the \ solution} \ y = -1 + ce^x. \\ &= 0 + ce^x & \qquad \mathsf{Evaluate.} \\ \mathsf{RHS} = 1 + y & \qquad \mathsf{Right \ side \ of \ the \ DE.} \\ &= -1 + 1 + ce^x & \qquad \mathsf{Substitute \ the \ solution} \ y = -1 + ce^x. \\ &= ce^x & \qquad \mathsf{Evaluate.} \end{array}$$

Then LHS = RHS for all symbols. The DE is verified.

Answer Check an Implicit Solution

To answer check

$$y'=1+y^2$$

with **implicit solution**

$$\arctan(y) = x + c,$$

differentiate the implicit solution equation on x, to produce the differential equation.

 $\arctan(y(x)) = x + c$

The implicit equation, replacing y by y(x).

 $rac{d}{dx} rctan(y(x)) = rac{d}{dx}(x+c)$

Differentiate the previous equation.

 $rac{y'(x)}{1+(y(x))^2}=1+0$

Chain rule applied left.

 $y' = (1+0)(1+y^2)$

Cross-multiply to isolate y' left.

 $y' = 1 + y^2$

The DE is verified.