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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

mizf(t) = —kixi(t) + kof22(t) — 21 ()],
(1) maah(t) = —kalza(t) — 21 (t)] + kslzs(t) — z2(2)],
mgmg(t) = —kg [.%‘3<t) — X9 (t)] — k4.’L‘3(t).
Figure 20. Three masses
ki ke ks Ky 8 ;
S SO SN R connected by springs. The masses
slide along a frictionless horizontal
mp M2 m3 surface.

In vector-matrix form, this system is a second order system
Mx"(t) = Kx(t)

where the displacement x, mass matrix M and stiffness matrix K
are defined by the formulas

I mi 0 0 —k‘l — kg kQ 0
X=1|1T2], M= 0 my 0 5 K= kg *k‘g - ]433 ]{33
I3 0 0 ms 0 k3 —k‘3 - k4

Because M is invertible, the system can always be written as

x" = Ax, A= MT'K.

Converting x” = Ax to u' = Cu

Given a second order n x n system x” = Ax, define the variable u and
the 2n x 2n block matrix C' as follows.

o e (2) e (o)

Then each solution x of the second order system x” = Ax produces a
corresponding solution u of the first order system u’ = Cu. Similarly,
each solution u of u’ = Cu gives a solution x of x” = Ax by the formula
x = diag(/,0)u.

Characteristic Equation for x” = Ax

The characteristic equation for the n x n second order system x” = Ax
can be obtained from the corresponding 2n x 2n first order system u’ =
Cu. We will prove the following identity.
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Theorem 31 (Characteristic Equation)
Let x” = Ax be given with A n X n constant and let u/ = Cu be its
corresponding first order system, using (2). Then

(3) det(C — A\I) = (—1)"det(A — \2I).
Proof: The method of proof is to verify the product formula
-l ‘ 1 1 ‘ 0\ 0 ‘ 1
A‘—)\I )\I‘I o A—)\zl‘—/\l ’
Then the determinant product formula applies to give

(4) det(C — AT) det (#&) — det ( D . > .

Cofactor expansion is applied to give the two identities

I10Y 0| IY_ 2

Then (4) implies (3). The proof is complete.

Solving u’ = Cu and x”" = Ax

Consider the n x n second order system x” = Ax and its corresponding
2n x 2n first order system

(5) u = Cu, Cz(%), uz());,).

Theorem 32 (Eigenanalysis of A and C)
Let A be a given n X n constant matrix and define the 2n x 2n block matrix
C by (5). Then

(6) (C)‘I)<W>=O if and only if {AW = Nw,

z Z = AW.

Proof: The result is obtained by block multiplication, because
-\ I
C—AL= (T‘ﬁ) -

Theorem 33 (General Solutions of u' = Cu and x” = Ax)

Let A be a given n x n constant matrix and define the 2n x 2n block matrix
C by (5). Assume C has eigenpairs {(/\j,yj)}?zl and yi, ..., yo, are
independent. Let I denote the n x n identity and define w; = diag(/,0)y;,
j=1,...,2n. Then u’ = Cu and x” = Ax have general solutions

Aty (2n x 1),

Aantyyro, (nx1).

u(t) = ceMlyr+---+ e

x(t) = 1MW+t cone
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Proof: Let x;(t) = e*'w;, j = 1,...,2n. Then x; is a solution of x” = Ax,
because x//(t) = e**(X;)*w; = Ax;(t), by Theorem 32. To be verified is the
independence of the solutions {x; }?’;1. Let z; = A\jw; and apply Theorem 32

W
. _ Vi _ 2 .
to write y; = ( . >7 Aw; = )\jwj. Suppose constants ay, ..., ag, are given

such that Z?Zl arpx; = 0. Differentiate this relation to give ijl apeitz; =0

for all t. Set t = 0 in the last summation and combine to obtain Zle ary; = 0.
Independence of yq, ..., y2, implies that a; = -+ = a9, = 0. The proof is
complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values p of A are negative or zero, then, for some w > 0, eigenvalue p
is related to an eigenvalue A of C by the relation p = —w? = A2. Then
A = fwi and w = y/—p. Consider an eigenpair (—w?,v) of the real n x n
matrix A with w > 0 and let

crcoswt + cogsinwt  w > 0,
u(t) =

c1 + eot w=0.

Then u”(t) = —w?u(t) (both sides are zero for w = 0). It follows that
x(t) = u(t)v satisfies x”(t) = —w?x(t) and Ax(t) = u(t)Av = —w?x(t).
Therefore, x(t) = u(t)v satisfies x"(t) = Ax(t).

Theorem 34 (Eigenanalysis Solution of x” = Ax)

Let the nxn real matrix A have eigenpairs { (1, v;)}}_;. Assume p; = —wjz-
withw; > 0,7 =1,...,n. Assumethatvy, ..., v, arelinearly independent.
Then the general solution of x”(t) = Ax(t) is given in terms of 2n arbitrary
constants ai, ..., an, b1, ..., by by the formula

n sinw;t
(7) x(t) = Z ajcosw;t + b; v

; W

j=1 J
In this expression, we use the limit convention

sinwt
=1{.
W lw=0

Proof: The text preceding the theorem and superposition establish that x(t) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial conditions
x(0) = xg, x'(0) = yo. Define the constants uniquely by the relations

X0 = Z?:l a;vij,
n
Yo = Z_j:l ijj7
which is possible by the assumed independence of the vectors {v;}}_;. Then

(7) implies x(0) = >=7_, a;v; = xo and x'(0) = 3°7_, b;v; = yo. The proof is
complete.



