Shortcuts for Solving First Order Linear Differential Equations
 $$
y^{\prime}+p(x) y=r(x)
$$

Contents

- Homogeneous Equation Shortcut: $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}$
- Constant-Coefficients Shortcut: $\boldsymbol{y}^{\prime}+($ constant $) \boldsymbol{y}=$ (constant)
- Particular Solution Shortcut: $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$
- Superposition Shortcut: $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$
- Example: Homogeneous Equation Shortcut, $(x+1) y^{\prime}+x y=0$.
- Example: Constant-Coefficients Shortcut, $2 \boldsymbol{y}^{\prime}-5 y=-\sqrt{\pi}$.
- Example: Particular Solution Shortcut, $\boldsymbol{x} \boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$.
- Example: Superposition Shortcut, $\boldsymbol{x} \boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$.

Throughout these slides, the integrating factor for $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ is the expression

$$
W(x)=e^{u(x)}, \quad u(x)=\int p(x) d x
$$

Theorem 1 (Homogeneous Equation Shortcut)

Assume $\boldsymbol{p}(\boldsymbol{x})$ is continuous on an interval. Then the solution of the homogeneous differential equation $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\mathbf{0}$ on that interval is given by the formula

$$
\begin{equation*}
y(x)=\frac{\text { constant }}{\text { integrating factor }}=\frac{c}{W(x)} \tag{1}
\end{equation*}
$$

Proof: Replace the left side $y^{\prime}+p(x) y$ of the homogeneous equation by the integrating factor quotient $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$. Cross-multiply to get $(\boldsymbol{y} \boldsymbol{W})^{\prime}=0$. Integrate: $\boldsymbol{y} \boldsymbol{W}=\boldsymbol{c}$. Then $\boldsymbol{y}=\frac{\boldsymbol{c}}{\boldsymbol{W}}$, as claimed.

Theorem 2 (Constant-Coefficient Shortcut)

Assume \boldsymbol{A} and B are constants with $\boldsymbol{A} \neq 0$. Differential equation $\boldsymbol{y}^{\prime}+\boldsymbol{A} \boldsymbol{y}=\boldsymbol{B}$ has general solution

$$
\begin{equation*}
y(x)=\frac{\text { constant }}{\text { integrating factor }}+\text { equilibrium solution }=\frac{c}{e^{A x}}+\frac{B}{A} . \tag{2}
\end{equation*}
$$

Proof: The homogeneous solution is a constant divided by the integrating factor, by Theorem 1. An equilibrium solution can be found by formally setting $y^{\prime}=0$, then solving for $y=B / A$. By the superposition Theorem, the solution y must be the sum of these two solutions. We remark that the case $\boldsymbol{A}=0$ results in a quadrature equation $y^{\prime}=\boldsymbol{B}$ which is routinely solved by the method of quadrature.

Theorem 3 (Particular Solution Shortcut)

Assume $\boldsymbol{p}(\boldsymbol{x})$ and $\boldsymbol{r}(\boldsymbol{x})$ are continuous functions on an interval. Differential equation $y^{\prime}+\boldsymbol{p}(x) y=r(x)$ on this interval has a particular solution

$$
\begin{align*}
y_{p}(x) & =\frac{\text { integral of } r(x) \text { times an integrating factor }}{\text { integrating factor }} \\
& =\frac{\int r(x) W(x) d x}{W(x)}, \quad W(x)=e^{\int p(x) d x} \tag{3}
\end{align*}
$$

Proof: Replace $y^{\prime}+p(x) y$ by the integrating factor quotient $(y W)^{\prime} / W$, then $(y W)^{\prime}=r W$. Integrate both sides of this last equation: $\boldsymbol{y} \boldsymbol{W}=\int r \boldsymbol{W} d \boldsymbol{x}+\boldsymbol{c}$. Choose $c=0$ to obtain the particular solution $\boldsymbol{y}_{\boldsymbol{p}}(\boldsymbol{x})$ reported in equation (3).

Linear Integrating Factor Shortcut

Theorem 4

(Superposition Principle) The general solution of $y^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ is given by

$$
y=y_{h}+y_{p}
$$

where \boldsymbol{y}_{h} is the general solution of the homogeneous equation $y^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=0$ and y_{p} is a particular solution of the non-homogeneous equation $y^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$.
A shortcut to the linear integrating factor method is superposition plus two shortcuts:

$$
\begin{aligned}
& y(x)=y_{h}(x)+y_{p}(x) \\
& \boldsymbol{y}_{h}(x)=\frac{\text { constant }}{\text { integrating factor }} \\
& \boldsymbol{y}_{p}(\boldsymbol{x})=\frac{\text { integral of } r \text { times integrating factor }}{\text { integrating factor }} \\
& \text { integrating factor }=\boldsymbol{W}(\boldsymbol{x})=e^{\int p(x) d x}
\end{aligned}
$$

1 Example (Shortcut: Homogeneous Equation)

(a) Solve the homogeneous equation $2 y^{\prime}+x^{2} y=0$.

(b) Solve the homogeneous equation $(x+1) y^{\prime}+x y=0$.

Solution:

(a) By Theorem 1, the solution is a constant divided by the integrating factor. First, divide by 2 to get $\boldsymbol{y}^{\prime}+$ $p(x) y=0$ with $p(x)=\frac{1}{2} x^{2}$. Then $\int p(x) d x=x^{3} / 6+c$ implies $W=e^{x^{3} / 6}$ is an integrating factor. The solution is $y=\frac{c}{e^{x^{3} / 6}}$.
(b) By Theorem 1, the solution is a constant divided by the integrating factor.

Homogeneous Form $y^{\prime}+p y=0$. Divide by $x+1$ to get $y^{\prime}+p(x) y=0$ with $p(x)=\frac{x}{x+1}=$ $1-\frac{1}{x+1}$.
Integrating Factor W. Evaluate $\int p(x) d x=\int\left(1-\frac{1}{x+1}\right) d x=x-\ln |x+1|+c$. Then $\boldsymbol{W}=e^{x-\ln |x+1|}$ is an integrating factor. We use rules $e^{\ln u}=u$ for $u>0, b \ln u=\ln \left(u^{b}\right)$ and $e^{a+b}=e^{a} e^{b}$. Then $W=e^{x} e^{-\ln |x+1|}=e^{x} e^{\ln \left(|x+1|^{-1}\right)}=e^{x}|x+1|^{-1}=\frac{e^{x}}{(\pm 1)(x+1)}$. Due to the common factor of ± 1, another integrating factor is $W=\frac{e^{x}}{x+1}$.
Shortcut. The solution is $y=\frac{c}{W}=\frac{c(x+1)}{e^{x}}$.

2 Example (Shortcut: Constant-Coefficient Equation)

Solve the non-homogeneous constant-coefficient equation $2 y^{\prime}-5 y=-\sqrt{\pi}$.

Solution: The method described here only works for first order constant-coefficient differential equations. If $\boldsymbol{y}^{\prime}=f(x, y)$ is not linear or it fails to have constant coefficients, then the method fails.
The solution has two steps:
(1) Find the solution y_{h} of the homogeneous equation $2 y^{\prime}-5 y=0$.

The answer is a constant divided by the integrating factor.
Standard Form. First divide the equation by 2 to obtain the standard form $y^{\prime}+(-5 / 2) y=0$. Identify $p(x)=-5 / 2$.
Integrating Factor. Integrate: $\int p(x) d x=-5 x / 2+c$. Then $W=e^{-5 x / 2}$ is the integrating factor.
Shortcut. The answer is $y_{h}=\frac{c}{W}=c e^{5 x / 2}$.
(2) Find an equilibrium solution y_{p} for $2 y^{\prime}-5 y=-\sqrt{\pi}$.

This answer is found by formally replacing y^{\prime} by zero. Then $2(0)-5 y=-\sqrt{\pi}$ implies $\boldsymbol{y}_{p}=\frac{\sqrt{\pi}}{5}$. The general solution is the sum of the answers from (1) and (2), by superposition, giving

$$
y=y_{h}+y_{p}=c e^{5 x / 2}+\frac{\sqrt{\pi}}{5}
$$

The method of this example might be called the superposition method shortcut.

3 Example (Particular Solution Shortcut)

 Find a particular solution of non-homogeneous equation $x y^{\prime}+y=x^{2}$.Solution: The answer is $y_{p}(x)=\frac{x^{3} / 3}{x}=\frac{x^{2}}{3}$. The shortcut has these steps:
Standard Form. Divide by $x: y^{\prime}+(1 / x) y=x$. Then $p=1 / x, r=x$.
Homogeneous Equation. Replace the RHS by zero, $y^{\prime}+(1 / x) y=0$. Then $p=1 / x$.
Integrating Factor W. Evaluate $\int p(x) d x=\int(1 / x) d x=\ln |x|+c_{1}$. We drop c_{1} to simplify. Then $W=e^{\ln |x|}$ is an integrating factor. Because $e^{\ln u}=u$, then $W=|x|=(\pm 1) x$. We drop the factor ± 1 to obtain simplified integrating factor $W=x$.
Particular Solution Shortcut. First integrate $\int r \boldsymbol{W} d x=\int x x d x=\frac{x^{3}}{3}+c_{2}$. Drop constant c_{2}. Then \boldsymbol{y}_{p} is this answer divided by $W: \boldsymbol{y}_{p}=\frac{\frac{x^{3}}{3}}{x}=\frac{x^{2}}{3}$.

4 Example (Superposition Shortcut)

Solve by the superposition shortcut the non-homogeneous equation $x y^{\prime}+y=x^{2}$.
Solution: The solution has two steps:
(1) Find the solution y_{h} of the homogeneous equation $x y^{\prime}+y=0$.

The homogeneous solution shortcut details are in the preceding example: $y_{h}=\frac{c}{W}=\frac{c}{x}$.
(2) Find a particular solution y_{p} for $x y^{\prime}+y=x^{2}$.

The steps for the particular solution shortcut are those of the preceding example: $y_{p}=\frac{x^{2}}{3}$.
The general solution is the sum of the answers from (1) and (2), by superposition, giving

$$
y=y_{h}+y_{p}=\frac{c}{x}+\frac{x^{2}}{3}
$$

