The Integrating Factor Method

for a

Linear Differential Equation

$$
y^{\prime}+p(x) y=r(x)
$$

Contents

- Superposition $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$
- Integrating Factor Identity
- The Linear Integrating Factor Method
- Examples $\boldsymbol{x} y^{\prime}+y=x^{2},(x+1) y^{\prime}-y=-1$
- Variation of Parameters

Superposition
Consider the homogeneous equation

$$
\begin{equation*}
y^{\prime}+p(x) y=0 \tag{1}
\end{equation*}
$$

and the non-homogeneous equation

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x) \tag{2}
\end{equation*}
$$

where \boldsymbol{p} and \boldsymbol{r} are continuous in an interval \boldsymbol{J}.

Theorem 1 (Superposition)

The general solution of the non-homogeneous equation (2) is given by

$$
\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}
$$

where \boldsymbol{y}_{h} is the general solution of homogeneous equation (1) and \boldsymbol{y}_{p} is a particular solution of non-homogeneous equation (2).

Integrating Factor Identity

The technique called the integrating factor method uses the replacement rule

$$
\begin{equation*}
\text { Fraction } \frac{(\boldsymbol{Y} \boldsymbol{W})^{\prime}}{W} \text { replaces } \boldsymbol{Y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{Y}, \text { where } \boldsymbol{W}=e^{\int p(x) d x} \tag{3}
\end{equation*}
$$

The factor $\boldsymbol{W}=e^{\int p(x) d x}$ in (3) is called an integrating factor. The fraction $\frac{(Y W)^{\prime}}{W}$ is called the Integrating Factor Quotient.

Details

Let $\boldsymbol{W}=e^{\int p(x) d x}$. Then $\boldsymbol{W}^{\prime}=p \boldsymbol{W}$, by the rule $\left(e^{x}\right)^{\prime}=e^{x}$, the chain rule and the fundamental theorem of calculus $\left(\int p(x) d x\right)^{\prime}=p(x)$.
Let's prove $(\boldsymbol{W} \boldsymbol{Y})^{\prime} / \boldsymbol{W}=\boldsymbol{Y}^{\prime}+\boldsymbol{p} \boldsymbol{Y}$. The derivative product rule implies

$$
\begin{aligned}
(\boldsymbol{Y} W)^{\prime} & =\boldsymbol{Y}^{\prime} W+\boldsymbol{Y} W^{\prime} \\
& =\boldsymbol{Y}^{\prime} W+\boldsymbol{Y} \boldsymbol{W} \\
& =\left(\boldsymbol{Y}^{\prime}+\boldsymbol{p} \boldsymbol{Y}\right) W
\end{aligned}
$$

Divide by \boldsymbol{W}. The proof is complete.

The Integrating Factor Method
Standard Rewrite $y^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ in the form $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ where Form $\boldsymbol{p}, \boldsymbol{r}$ are continuous. The method applies only in case this is possible.
Find $\boldsymbol{W} \quad$ Find a simplified formula for $\boldsymbol{W}=e^{\int p(x) d x}$. The antiderivative $\int p(x) d x$ can be chosen conveniently (set integration constants to zero).
Prepare for Obtain the new equation $\frac{(\boldsymbol{y} \boldsymbol{W})^{\prime}}{\boldsymbol{W}}=\boldsymbol{r}$ by replacing the left side
Quadrature Quadrature of $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ by the Integrating Factor Quotient, equivalence (3).
Method of Clear fractions to obtain $(\boldsymbol{y} \boldsymbol{W})^{\prime}=r \boldsymbol{W}$. Apply the method of Quadrature quadrature to get $\boldsymbol{y} \boldsymbol{W}=\int \boldsymbol{r}(\boldsymbol{x}) \boldsymbol{W}(\boldsymbol{x}) d \boldsymbol{x}+\boldsymbol{C}$. Divide by \boldsymbol{W} to isolate the explicit solution $\boldsymbol{y}(\boldsymbol{x})$.
Equation (3) is central to the method, because it collapses the two terms $\boldsymbol{y}^{\prime}+\boldsymbol{p} \boldsymbol{y}$ into a single term $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$; the method of quadrature applies to $(\boldsymbol{y} \boldsymbol{W})^{\prime}=\boldsymbol{r} \boldsymbol{W}$. Literature calls the exponential factor \boldsymbol{W} an integrating factor and equivalence (3) a factorization of $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}$.

Integrating Factor Example 1

Example. Solve the linear differential equation $\boldsymbol{x} \boldsymbol{y}^{\prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$.
Solution: The standard form of the linear equation is

$$
y^{\prime}+\frac{1}{x} y=x
$$

Let

$$
W=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x, \quad x>0
$$

and replace the LHS of the differential equation by $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$ to obtain the quadrature equation

$$
(y W)^{\prime}=x \boldsymbol{W} \text { equivalent to }(y x)^{\prime}=x^{2}
$$

Apply quadrature to this equation, then divide by \boldsymbol{W}. The answer is

$$
y=\frac{x^{2}}{3}+\frac{c}{x}
$$

Integrating Factor Example 2

Example. Solve the linear differential equation $(x+1) y^{\prime}-y=-1$.
Solution: The answer is $y=1+c(x+1)$.
The standard form $\boldsymbol{y}^{\prime}+\boldsymbol{p}(\boldsymbol{x}) \boldsymbol{y}=\boldsymbol{r}(\boldsymbol{x})$ of the linear equation is

$$
y^{\prime}+\left(\frac{-1}{x+1}\right) y=\frac{-1}{x+1}, \quad p(x)=\frac{-1}{x+1}, \quad r(x)=\frac{-1}{x+1} .
$$

Let

$$
W=e^{\int \frac{-1}{x+1} d x}=e^{-\ln |x+1|}=e^{\ln \left(\frac{1}{|x+1|}\right)}=\frac{1}{|x+1|}
$$

where integration constants have been set to zero. Because $|x+1|=(\pm 1)(x+1)$, then the factor ± 1 can be dropped to give a simplified integrating factor $W=\frac{1}{x+1}$. Replace the LHS of the differential equation by the Integrating Factor Quotient $(\boldsymbol{y} \boldsymbol{W})^{\prime} / \boldsymbol{W}$ to get a quadrature equation

$$
(y W)^{\prime}=\frac{-1}{x+1} W \quad \text { equivalent to } \quad(y /(x+1))^{\prime}=\frac{-1}{(x+1)^{2}}
$$

Quadrature gives $y W=\frac{1}{x+1}+c$. Divide by $W=\frac{1}{x+1}$, then $y=1+c(x+1)$.

Variation of Parameters

The initial value problem

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x), \quad y\left(x_{0}\right)=0 \tag{4}
\end{equation*}
$$

where \boldsymbol{p} and \boldsymbol{r} are continuous in an interval containing $\boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}$, has a particular solution

$$
\begin{equation*}
y(x)=e^{-\int_{x_{0}}^{x} p(s) d s} \int_{x_{0}}^{x} r(t) e^{\int_{x_{0}}^{t} p(s) d s} d t \tag{5}
\end{equation*}
$$

Formula (5) is called variation of parameters, for historical reasons.
The formula determines a particular solution \boldsymbol{y}_{p} which can be used in the superposition identity $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$.

While (5) has some appeal, applications use the integrating factor method, which is developed with indefinite integrals for computational efficiency. No one memorizes (5); they remember and study the Integrating Factor Method.
The Particular Solution Shortcut summarizes the variation of parameters formula without selecting integration constant zero. The shortcut in terms of the integrating factor $W=e^{\int p(x) d x}$ is:

$$
y_{p}(x)=\frac{\int r(x) W(x) d x}{W(x)}
$$

