Cayley-Hamilton Theorem

- Characteristic Equation
- Cayley-Hamilton Theorem
- An Example

Characteristic Equation

\qquad

Definition 1 (Characteristic Equation)

Given a square matrix \boldsymbol{A}, the characteristic equation of \boldsymbol{A} is the polynomial equation

$$
\operatorname{det}(A-r I)=0
$$

The determinant $|\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I}|$ is formed by subtracting \boldsymbol{r} from the diagonal of \boldsymbol{A}. The polynomial $\boldsymbol{p}(\boldsymbol{r})=|\boldsymbol{A}-\boldsymbol{r I}|$ is called the characteristic polynomial.

- If \boldsymbol{A} is 2×2, then $\boldsymbol{p}(\boldsymbol{r})$ is a quadratic.
- If A is 3×3, then $p(r)$ is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})$ by subtracting r from the diagonal of \boldsymbol{A}.
Evaluate by the cofactor rule.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right), \quad p(r)=\left|\begin{array}{cc}
2-r & 3 \\
0 & 4-r
\end{array}\right|=(2-r)(4-r) \\
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right), \quad p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
\end{gathered}
$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix \boldsymbol{A} satisfies its own characteristic equation.
If $p(r)=(-r)^{n}+a_{n-1}(-r)^{n-1}+\cdots a_{0}$, then the result is the equation

$$
(-A)^{n}+a_{n-1}(-A)^{n-1}+\cdots+a_{1}(-A)+a_{0} I=0
$$

where \boldsymbol{I} is the $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix and $\mathbf{0}$ is the $\boldsymbol{n} \times \boldsymbol{n}$ zero matrix.

The 2×2 Case

Let $\boldsymbol{A}=\left(\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right)$. Then the cofactor rule implies

$$
p(r)=\left|\begin{array}{cc}
a-r & b \\
c & d-r
\end{array}\right|=r^{2}-(a+d) r+a d-b c
$$

Define

$$
\begin{aligned}
& a_{1}=a+d=\operatorname{trace}(A) \\
& a_{0}=a d-b c=\operatorname{det}(A)
\end{aligned}
$$

Then $\boldsymbol{p}(\boldsymbol{r})=\boldsymbol{r}^{2}+\boldsymbol{a}_{1}(-r)+\boldsymbol{a}_{0}$. The Cayley-Hamilton theorem says

$$
\begin{gathered}
A^{2}+a_{1}(-A)+a_{0}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \text { or } \\
A^{2}-(a+d) A+(a d-b c)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Cayley-Hamilton Example

Assume

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right)
$$

Then

$$
p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
$$

and the Cayley-Hamilton Theorem says that

$$
(2 I-A)(5 I-A)(7 I-A)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

