Solution Set Basis for Linear Differential Equations

- Nth Order Linear Differential Equation
- Euler Solution Atoms
- Examples of Euler Solution Atoms
- Theorems about Atoms
 - Atoms are independent
 - Euler's Theorem
 - Basis of the solution set
- How to use Euler's Theorem
- Examples

Linear Differential Equations

The solution set of a homogeneous constant coefficient linear differential equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0$$

is known to be a vector space of functions of dimension n, consisting of special linear combinations

$$(1) y = c_1 f_1 + \cdots + c_n f_n,$$

where f_1, \ldots, f_n are elementary functions known as Euler solution atoms.

Definition of Euler Solution Atom

A base atom is defined to be one of

$$1, e^{ax}, \cos bx, \sin bx, e^{ax} \cos bx, e^{ax} \sin bx,$$

with real $a \neq 0, b > 0$.

An Euler solution atom equals a base atom multiplied by x^n , where $n = 0, 1, 2 \dots$ is an integer.

An atom has coefficient 1, and the zero function is not an atom.

Examples of Euler Solution Atoms

 $1, x, x^2, e^x, xe^{-x}, x^{15}e^{2x}\cos 3x, \cos 3x, \sin 2x, x^2\cos 2x, x^6\sin \pi x, x^{10}e^{\pi x}\sin 0.1x$

Functions that are not Atoms

$$x/(1+x), \ln|x|, e^{x^2}, \sin(x+1), 0, 2x, \sin(1/x), \sqrt{x}$$

Theorems about Atoms

Theorem 1 (Independence)

Any finite list of atoms is linearly independent.

Theorem 2 (Euler)

The *real* characteristic polynomial $p(r)=r^n+a_{n-1}r^{n-1}+\cdots+a_0$ has a factor $(r-a-ib)^{k+1}$ if and only if

$$x^k e^{ax} \cos bx$$
, $x^k e^{ax} \sin bx$

are real solutions of the differential equation (1). If b > 0, then both are atoms. If b = 0, then only the first is an atom. The theorem is applied multiple times to discover all Euler solution atoms for a given characteristic equation.

Theorem 3 (Real Solutions)

If u and v are real and u + iv is a solution of equation (1), then u and v are real solutions of equation (1).

Theorem 4 (Basis)

The solution set of equation (1) has a basis of n solution atoms which are determined by Euler's theorem.

Euler's Theorem Translated

Theorem 5 (How to Apply Euler's Theorem)

Factor dividing $p(r)$	Euler Solution Atom(s)
(r-5)	e^{5x}
$(r+7)^2$	e^{-7x} , xe^{-7x}
$(r+7)^3$	$e^{-7x},xe^{-7x},x^2e^{-7x}$
r	e^{0x}
r^2	e^{0x} and xe^{0x}
r^3	1 , x and x^2 $\left[e^{0x}=1 ight]$
(r-5i)	$\cos 5x$ and $\sin 5x$
$(r+3i)^2$	$\cos 3x$, $x\cos 3x$, $\sin 3x$, $x\sin 3x$
$(r-2+3i)^2$	$e^{2x}\cos 3x, xe^{2x}\cos 3x, e^{2x}\sin 3x, xe^{2x}\sin 3x$

Example 1. Solve y''' = 0.

Solution: $p(r) = r^3$ implies 1 is a base atom and then 1, x, x^2 are Euler solution atoms. They are independent, hence form a basis for the 3-dimensional solution space. Then $y = c_1 + c_2 x + c_3 x^2$.

Example 2. Solve y'' + 4y = 0.

Solution: $p(r) = r^2 + 4$ implies base atoms $\cos 2x$ and $\sin 2x$. They are a basis for the 2-dimensional solution space with $y = c_1 \cos 2x + c_2 \sin 2x$.

Example 3. Solve y'' + 2y' = 0.

Solution: $p(r) = r^2 + 2r$ implies 1, e^{-2x} are base solution atoms. These independent Euler solution atoms form a basis. Then $y = c_1 + c_2 e^{-2x}$.

Example 4. Solve $y^{(4)} + 4y'' = 0$.

Solution: $p(r)=r^4+4r^2=r^2(r^2+4)$ implies the four atoms $1, x, \cos 2x$, $\sin 2x$ are solutions. Then $y=c_1+c_2x+c_3\cos 2x+c_3\sin 2x$.

Example 5. Solve the differential equation if $p(r) = (r^3 - r^2)(r^2 - 1)(r^2 + 4)^2$. Solution: The distinct factors of p(r) are r^2 , $(r-1)^2$, r+1, $(r-2i)^2$, $(r+2i)^2$. Euler's theorem implies the DE has nine solution atoms 1, x, e^x , xe^x , e^{-x} , $\cos 2x$, $x\cos 2x$, $\sin 2x$, $x\sin 2x$. Then y is a linear combination of these atoms.