Solution Set Basis for Linear Differential Equations

- Nth Order Linear Differential Equation
- Euler Solution Atoms
- Examples of Euler Solution Atoms
- Theorems about Atoms
- Atoms are independent
- Euler's Theorem
- Basis of the solution set
- How to use Euler's Theorem
- Examples

Linear Differential Equations

The solution set of a homogeneous constant coefficient linear differential equation

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

is known to be a vector space of functions of dimension \boldsymbol{n}, consisting of special linear combinations

$$
\begin{equation*}
y=c_{1} f_{1}+\cdots+c_{n} f_{n} \tag{1}
\end{equation*}
$$

where f_{1}, \ldots, f_{n} are elementary functions known as Euler solution atoms.

Definition of Euler Solution Atom

A base atom is defined to be one of

$$
1, e^{a x}, \cos b x, \sin b x, e^{a x} \cos b x, e^{a x} \sin b x
$$

with real $a \neq 0, b>0$.
An Euler solution atom equals a base atom multiplied by \boldsymbol{x}^{n}, where $\boldsymbol{n}=0,1,2 \ldots$ is an integer.
An atom has coefficient 1, and the zero function is not an atom.

Examples of Euler Solution Atoms

\qquad
$1, x, x^{2}, e^{x}, x e^{-x}, x^{15} e^{2 x} \cos 3 x, \cos 3 x, \sin 2 x, x^{2} \cos 2 x, x^{6} \sin \pi x$, $x^{10} e^{\pi x} \sin 0.1 x$

Functions that are not Atoms

$$
x /(1+x), \ln |x|, e^{x^{2}}, \sin (x+1), 0,2 x, \sin (1 / x), \sqrt{x}
$$

Theorems about Atoms

Theorem 1 (Independence)

Any finite list of atoms is linearly independent.

Theorem 2 (Euler)

The real characteristic polynomial $\boldsymbol{p}(r)=r^{n}+a_{n-1} r^{n-1}+\cdots+a_{0}$ has a factor $(r-a-i b)^{k+1}$ if and only if

$$
x^{k} e^{a x} \cos b x, \quad x^{k} e^{a x} \sin b x
$$

are real solutions of the differential equation (1). If $\boldsymbol{b}>\boldsymbol{0}$, then both are atoms. If $\boldsymbol{b}=\mathbf{0}$, then only the first is an atom. The theorem is applied multiple times to discover all Euler solution atoms for a given characteristic equation.

Theorem 3 (Real Solutions)

If \boldsymbol{u} and \boldsymbol{v} are real and $\boldsymbol{u}+\boldsymbol{i v}$ is a solution of equation (1), then \boldsymbol{u} and \boldsymbol{v} are real solutions of equation (1).

Theorem 4 (Basis)

The solution set of equation (1) has a basis of \boldsymbol{n} solution atoms which are determined by Euler's theorem.

Euler's Theorem Translated

Theorem 5 (How to Apply Euler's Theorem)

Factor dividing $p(r)$	Euler Solution Atom(s)
$(r-5)$	$e^{5 x}$
$(r+7)^{2}$	$e^{-7 x}, x e^{-7 x}$
$(r+7)^{3}$	$e^{-7 x}, x e^{-7 x}, x^{2} e^{-7 x}$
r	$e^{0 x}$
r^{2}	$e^{0 x}$ and $x e^{0 x}$
r^{3}	$1, x$ and $x^{2}\left[e^{0 x}=1\right]$
$(r-5 i)$	$\cos 5 x$ and $\sin 5 x$
$(r+3 i)^{2}$	$\cos 3 x, x \cos 3 x, \sin 3 x, x \sin 3 x$
$(r-2+3 i)^{2}$	$e^{2 x} \cos 3 x, x e^{2 x} \cos 3 x, e^{2 x} \sin 3 x, x e^{2 x} \sin 3 x$

Example 1. Solve $\boldsymbol{y}^{\prime \prime \prime}=0$.
Solution: $\boldsymbol{p}(\boldsymbol{r})=\boldsymbol{r}^{3}$ implies $\mathbf{1}$ is a base atom and then $\mathbf{1}, \boldsymbol{x}, \boldsymbol{x}^{2}$ are Euler solution atoms. They are independent, hence form a basis for the 3 -dimensional solution space.
Then $y=c_{1}+c_{2} x+c_{3} x^{2}$.
Example 2. Solve $\boldsymbol{y}^{\prime \prime}+4 \boldsymbol{y}=0$.
Solution: $p(r)=r^{2}+4$ implies base atoms $\cos 2 x$ and $\sin 2 x$. They are a basis for the 2 -dimensional solution space with $y=c_{1} \cos 2 x+c_{2} \sin 2 x$.

Example 3. Solve $\boldsymbol{y}^{\prime \prime}+\mathbf{2} \boldsymbol{y}^{\prime}=\mathbf{0}$.
Solution: $p(r)=r^{2}+2 r$ implies $1, e^{-2 x}$ are base solution atoms. These independent Euler solution atoms form a basis. Then $y=c_{1}+c_{2} e^{-2 x}$.
Example 4. Solve $y^{(4)}+4 y^{\prime \prime}=0$.
Solution: $p(r)=r^{4}+4 r^{2}=r^{2}\left(r^{2}+4\right)$ implies the four atoms $1, x, \cos 2 x$, $\sin 2 x$ are solutions. Then $y=c_{1}+c_{2} x+c_{3} \cos 2 x+c_{3} \sin 2 x$.

Example 5. Solve the differential equation if $p(r)=\left(r^{3}-r^{2}\right)\left(r^{2}-1\right)\left(r^{2}+4\right)^{2}$. Solution: The distinct factors of $p(r)$ are $r^{2},(r-1)^{2}, r+1,(r-2 i)^{2},(r+2 i)^{2}$. Euler's theorem implies the DE has nine solution atoms $1, \boldsymbol{x}, \boldsymbol{e}^{x}, \boldsymbol{x} \boldsymbol{e}^{x}, e^{-x}, \cos 2 \boldsymbol{x}$, $x \cos 2 x, \sin 2 x, x \sin 2 x$. Then y is a linear combination of these atoms.

