
1 Heaviside’s Method

This practical method, popularized by the English electrical engineer Oliver
Heaviside (1850–1925)., systematically converts a polynomial quotient

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
(1)

into a sum of partial fractions (defined below). It is assumed that a0, .., an, b0, . . . , bm
are constants and the polynomial quotient (1) has limit zero at s =∞.

1.1 Partial Fraction Theory

Definition. A partial fraction is a fraction with a constant in the numerator and
a denominator having just one root. Such fractions have the form

A

(s− s0)k
. (2)

The numerator A in (2) and the denominator root s = s0 are real or complex
constants.
In college algebra, it is shown that a rational function (1) can be expressed as
the sum of partial fractions. The power (s − s0)k in (2) must divide the
denominator in (1).
Assume fraction (1) has real coefficients.
Real Root. If root s0 in (2) is real, then A is real. In the partial fraction
expansion of (1), such a fraction will appear if and only if (s − s0)k is a factor
of the denominator b0 + b1s+ · · ·+ bms

m.
Non-Real Root. If root s0 = α + iβ in (2) is complex, then (s − s0)k also
divides the denominator in (1), where s0 = α − iβ is the complex conjugate of
s0. The corresponding partial fractions used in the partial fraction expansion
of (1) turn out to be complex conjugates of one another, which can be paired
and re-written as a fraction

A

(s− s0)k
+

A

(s− s0)k
=

Q(s)

((s− α)2 + β2)k
, (3)

where Q(s) is a real polynomial. This justifies the replacement of the two partial
fractions by one fraction

B + Cs

((s− s0)(s− s0))
k

=
B + Cs

((s− α)2 + β2)k
,

in which B and C are real constants. This real form is preferred over the two
complex fractions on the left in equation (3), because integral tables typically
contain only real formulas.
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Simple Roots. Assume that (1) has real coefficients and the denominator of
the fraction (1) has distinct real roots s1, . . . , sN and distinct complex
roots α1 ± iβ1, . . . , αM ± iβM . The partial fraction expansion of (1) is a sum
given in terms of real constants Ap, Bq, Cq by

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)

(s− αq)2 + β2
q

. (4)

Multiple Roots. Assume (1) has real coefficients and the denominator of
the fraction (1) has possibly multiple roots. Let Np be the multiplicity of
real root sp and let Mq be the multiplicity of complex root αq + iβq (βq > 0),
1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction expansion of (1) is given in terms
of real constants Ap,k, Bq,k, Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)

((s− αq)2 + β2
q )k

. (5)

Summary. The theory for simple roots and multiple roots can be distilled as
follows.

A polynomial quotient p/q with limit zero at infinity has a
unique expansion into partial fractions. A partial fraction is
either a constant divided by a divisor of q having exactly one
real root, or else a linear function divided by a real divisor of
q, having exactly one complex conjugate pair of roots.

1.2 A Failsafe Method

Consider the expansion in partial fractions

s− 1

s(s+ 1)2(s2 + 1)
=
A

s
+

B

s+ 1
+

C

(s+ 1)2
+
Ds+ E

s2 + 1
. (6)

The five undetermined real constants A through E are found by clearing the
fractions, that is, multiply (6) by the denominator on the left to obtain the
polynomial equation

s− 1 = A(s+ 1)2(s2 + 1) +Bs(s+ 1)(s2 + 1)
+Cs(s2 + 1) + (Ds+ E)s(s+ 1)2.

(7)

Next, five different values of s are substituted into (7) to obtain equations for
the five unknowns A through E. We always use the roots of the denominator
to start: s = 0, s = −1, s = i, s = −i are the roots of s(s + 1)2(s2 + 1) = 0 .
Each complex root results in two equations, by taking real and imaginary parts.
The complex conjugate root s = −i is not used, because it duplicates equations
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already obtained from s = i. The three roots s = 0, s = −1, s = i give only
four equations, so we invent another value s = 1 to get the fifth equation:

−1 = A (s = 0)
−2 = −2C (s = −1)

i− 1 = (Di+ E)i(i+ 1)2 (s = i)
0 = 8A+ 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two equations,
as follows.

i− 1 = (Di+ E)i(i2 + 2i+ 1) Expand power.

i− 1 = −2Di− 2E Simplify using i2 = −1.

1 = −2D Equate imaginary parts.

−1 = −2E Equate real parts.

Solving the 5× 5 system, the answers are A = −1, B = 3/2, C = 1, D = −1/2,
E = 1/2.

1.3 Heaviside’s Coverup Method

The method applies only to the case of distinct roots of the denominator in (1).
Extensions to multiple-root cases can be made; see page 4.
To illustrate Oliver Heaviside’s ideas, consider the problem details

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
(9)

Equation (9) uses college algebra partial fractions.

[. mysterious details]Mysterious Details Oliver Heaviside proposed to find in
(9) the constant C = − 1

2 by a cover–up method:

2s+ 1

s(s− 1)

∣∣∣∣∣
s+1 =0

=
C

.

The instructions are to cover–up the matching factors (s + 1) on the left and
right with box (Heaviside used two fingertips), then evaluate on the left

at the root s which causes the box contents to be zero. The other terms on the
right are replaced by zero.
To justify Heaviside’s cover–up method, clear the fraction C/(s + 1), that

is, multiply (9) by the denominator s+ 1 of the partial fraction C/(s + 1) to
obtain the partially-cleared fraction relation

(2s+ 1) (s+ 1)

s(s− 1) (s+ 1)
=
A (s+ 1)

s
+
B (s+ 1)

s− 1
+
C (s+ 1)

(s+ 1)
.
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Set (s+ 1) = 0 in the display. Cancellations left and right plus annihilation

of two terms on the right gives Heaviside’s prescription

2s+ 1

s(s− 1)

∣∣∣∣
s+1=0

= C.

The factor (s+ 1) in (9) is by no means special: the same procedure applies to
find A and B. The method works for denominators with simple roots, that is,
no repeated roots are allowed.
Heaviside’s method in words:

To determine A in a given partial fraction A
s−s0

, multiply the

relation by (s− s0), which partially clears the fraction. Sub-
stitute for s via equation s− s0 = 0.

Extension to Multiple Roots. Heaviside’s method can be extended to the
case of repeated roots. The basic idea is to factor–out the repeats. To illustrate,
consider the partial fraction expansion details

R =
1

(s+ 1)2(s+ 2)
A sample rational function having repeated
roots.

=
1

s+ 1

(
1

(s+ 1)(s+ 2)

)
Factor–out the repeats.

=
1

s+ 1

(
1

s+ 1
+
−1

s+ 2

)
Apply the cover–up method to the simple
root fraction.

=
1

(s+ 1)2
+

−1

(s+ 1)(s+ 2)
Multiply.

=
1

(s+ 1)2
+
−1

s+ 1
+

1

s+ 2
Apply the cover–up method to the last
fraction on the right.

Terms with only one root in the denominator are already partial fractions. Thus
the work centers on expansion of quotients in which the denominator has two
or more roots.

Special Methods. Heaviside’s method has a useful extension for the case of
roots of multiplicity two. To illustrate, consider these details:

R =
1

(s+ 1)2(s+ 2)
1 A fraction with multiple roots.

=
A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
2 See equation (5), page 2.

=
A

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
3 Find B and C by Heaviside’s cover–up
method.
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=
−1

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
4 Details below.

We discuss 4 details. Multiply the equation 1 = 2 by s+1 to partially clear
fractions, the same step as the cover-up method:

1

(s+ 1)(s+ 2)
= A+

B

s+ 1
+
C(s+ 1)

s+ 2
.

We don’t substitute s + 1 = 0, because it gives infinity for the second term.
Instead, set s = ∞ to get the equation 0 = A + C. Because C = 1 from 3 ,
then A = −1.
The illustration works for one root of multiplicity two, because s = ∞ will
resolve the coefficient not found by the cover–up method.
In general, if the denominator in (1) has a root s0 of multiplicity k, then the
partial fraction expansion contains terms

A1

s− s0
+

A2

(s− s0)2
+ · · ·+ Ak

(s− s0)k
.

Heaviside’s cover–up method directly finds Ak, but not A1 to Ak−1.

Cover-up Method and Complex Numbers. Consider the partial fraction
expansion

10

(s+ 1)(s2 + 9)
=

A

s+ 1
+
Bs+ C

s2 + 9
.

The symbols A, B, C are real. The value of A can be found directly by the cover-
up method, giving A = 1. To find B and C, multiply the fraction expansion
by s2 + 9, in order to partially clear fractions, then formally set s2 + 9 = 0 to
obtain the two equations

10

s+ 1
= Bs+ C, s2 + 9 = 0.

The method applies the identical idea used for one real root. By clearing frac-
tions in the first, the equations become

10 = Bs2 + Cs+Bs+ C, s2 + 9 = 0.

Substitute s2 = −9 into the first equation to give the linear equation

10 = (−9B + C) + (B + C)s.

Because this linear equation has two complex roots s = ±3i, then real constants
B, C satisfy the 2× 2 system

−9B + C = 10,
B + C = 0.

Solving gives B = −1, C = 1.
The same method applies especially to fractions with 3-term denominators, like
s2 + s+ 1. The only change made in the details is the replacement s2 → −s−1.
By repeated application of s2 = −s− 1, the first equation can be distilled into
one linear equation in s with two roots. As before, a 2× 2 system results.
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1.4 Examples

Example 1.1 (Partial Fractions I) Show the details of the partial fraction
expansion

s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
=

2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s+ 2
.

Solution:
Background. The problem originates a partial fraction equality, which occurs as one
step in Laplace theory.
College algebra detail. College algebra partial fractions theory says that there exist
real constants A, B, C, D, E satisfying the identity

s3 + 2s2 + 2s + 5

(s− 1)(s2 + 4)(s2 + 2s + 2)
=

A

s− 1
+

B + Cs

s2 + 4
+

D + Es

s2 + 2 s + 2
.

As explained on page 1, the complex conjugate roots ±2i and −1±i are not represented
as terms c/(s− s0), but in the combined real form seen in the above display, which is
suited for use with integral tables.
The failsafe method applies to find the constants. In this method, the fractions are
cleared to obtain the polynomial relation

s3 + 2s2 + 2s + 5 = A(s2 + 4)(s2 + 2s + 2)

+(B + Cs)(s− 1)(s2 + 2s + 2)
+(D + Es)(s− 1)(s2 + 4).

The roots of the denominator (s− 1)(s2 + 4)(s2 + 2s + 2) to be inserted into the pre-
vious equation are s = 1, s = 2i, s = −1 + i. The conjugate roots s = −2i and
s = −1− i are not used. Each complex root generates two equations, by equating real
and imaginary parts, therefore there will be 5 equations in 5 unknowns. Substitution
of s = 1, s = 2i, s = −1 + i gives three equations

s = 1 10 = 25A,
s = 2i −4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i + 2),
s = −1 + i 5 = (D − E + Ei)(−2 + i)(2− 2(−1 + i)).

Writing each expanded complex equation in terms of its real and imaginary parts,
explained in detail below, gives 5 equations

s = 1 2 = 5A,
s = 2i −3 = −6B + 16C,
s = 2i −4 = −8B − 12C,
s = −1 + i 5 = −6D − 2E,
s = −1 + i 0 = 8D − 14E.

The equations are solved to give A = 2/5, B = 1/2, C = 0, D = −7/10, E = −2/5
(details for B, C below).
Complex equation to two real equations. It is an algebraic mystery how exactly
the complex equation

−4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i + 2)
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gets converted into two real equations. The process is explained here.
First, the complex equation is expanded, as though it is a polynomial in variable i, to
give the steps

−4i− 3 = (B + 2iC)(2i− 1)(−2 + 4i)
= (B + 2iC)(−4i + 2 + 8i2 − 4i) Expand.
= (B + 2iC)(−6− 8i) Use i2 = −1.
= −6B − 12iC − 8Bi + 16C Expand, use i2 = −1.
= (−6B + 16C) + (−8B − 12C)i Convert to form x + yi.

Next, the two sides are compared. Because B and C are real, then the real part of the
right side is (−6B + 16C) and the imaginary part of the right side is (−8B − 12C).
Equating matching parts on each side gives the equations

−6B + 16C = −3,
−8B − 12C = −4,

which is a 2× 2 linear system for the unknowns B, C.
Solving the 2 × 2 system. Such a system with a unique solution can be solved by
Cramer’s rule, matrix inversion or elimination. The answer: B = 1/2, C = 0.
The easiest method turns out to be elimination. Multiply the first equation by 4 and
the second equation by 3, then subtract to obtain C = 0. Then the first equation is
−6B + 0 = −3, implying B = 1/2.

Example 1.2 (Partial Fractions II) Verify the partial fraction expansion

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s+ 10

(s+ 1)
2

(s2 + s+ 1)
2 =

1

s+ 1
+

2

(s+ 1)2

+
3

s2 + s+ 1

+
4 + 5 s

(s2 + s+ 1)2

Solution:
Basic partial fraction theory implies that there are real constants a, b, c, d, e, f
satisfying the equation

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10

(s + 1)2 (s2 + s + 1)2
=

a

s + 1
+

b

(s + 1)2

+
c + ds

s2 + s + 1
+

e + f s

(s2 + s + 1)2

(10)

The failsafe method applies to clear fractions and replace the fractional equation by
the polynomial relation

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10 = a(s + 1)(s2 + s + 1)2

+b(s2 + s + 1)2

+(c + ds)(s2 + s + 1)(s + 1)2

+(e + f s)(s + 1)2

However, the prognosis for the resultant algebra is grime: only three of the six required
equations can be obtained by substitution of the roots (s = −1, s = −1/2 + i

√
3/2) of
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the denominator. We abandon the idea, because of the complexity of the 6×6 system
of linear equations required to solve for a through f .
Instead, the fraction on the left of (10) is written with repeated roots factored out, as
follows:

1

(s + 1)(s2 + s + 1)

(
p(x)

(s + 1)(s2 + s + 1)

)
,

p(x) = s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10.

Long division gives the formula

p(x)

(s + 1)(s2 + s + 1)
= s2 + 6s + 9.

Therefore, the fraction on the left of (10) can be written as

p(x)

(s + 1)2(s2 + s + 1)2
=

(s + 3)2

(s + 1)(s2 + s + 1)
.
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