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2.2 Separable Equations

An equation y′ = f(x, y) is called separable provided algebraic oper-
ations, usually multiplication, division and factorization, allow it to be
written in a separable form y′ = F (x)G(y) for some functions F and
G. This class includes the quadrature equations y′ = F (x). Separable
equations and associated solution methods were discovered by G. Leibniz
in 1691 and formalized by J. Bernoulli in 1694.

Finding a Separable Form

Given differential equation y′ = f(x, y), invent values x0, y0 such that
f(x0, y0) 6= 0. Define F , G by the formulas

F (x) =
f(x, y0)

f(x0, y0)
, G(y) = f(x0, y).(1)

Because f(x0, y0) 6= 0, then (1) makes sense.

Theorem 4 (Separability Test)
Let F and G be defined by equation (1). Compute F (x)G(y). Then

(a) F (x)G(y) = f(x, y) implies y′ = f(x, y) is separable.

(b) F (x)G(y) 6= f(x, y) implies y′ = f(x, y) is not separable.

Proof: Conclusion (b) follows from separability test I, infra. Conclusion (a)
follows because two functions F (x), G(y) have been defined in equation (1) such
that f(x, y) = F (x)G(y) (definition of separable equation).

Invention and Application. Initially, let (x0, y0) be (0, 0) or (1, 1)
or some suitable pair, for which f(x0, y0) 6= 0; then define F and G by
(1). Multiply F and G to test the equation FG = f . The algebra will
discover a factorization f = F (x)G(y) without having to know algebraic
tricks like factorizing multi-variable equations. But if FG 6= f , then the
algebra proves the equation is not separable.

Non-Separability Tests

Test I Equation y′ = f(x, y) is not separable if

f(x, y0)f(x0, y)− f(x0, y0)f(x, y) 6= 0(2)

for some pair of points (x0, y0), (x, y) in the domain of f .
Test II The equation y′ = f(x, y) is not separable if either

fx(x, y)/f(x, y) is non-constant in y or fy(x, y)/f(x, y)
is non-constant in x.
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Illustration. Consider y′ = xy + y2. Test I implies it is not separable,
because f(x, 1)f(0, y)−f(0, 1)f(x, y) = (x+1)y2−(xy+y2) = x(y2−y) 6=
0. Test II implies it is not separable, because fx/f = 1/(x + y) is not
constant as a function of y.

Test I details. Assume f(x, y) = F (x)G(y), then equation (2) fails be-
cause each term on the left side of (2) evaluates to F (x)G(y0)F (x0)G(y)
for all choices of (x0, y0) and (x, y) (hence contradiction 0 6= 0).

Test II details. Assume f(x, y) = F (x)G(y) and F , G are sufficiently
differentiable. Then fx(x, y)/f(x, y) = F ′(x)/F (x) is independent of y
and fy(x, y)/f(x, y) = G′(y)/G(y) is independent of x.

Separated Form Test

A separated equation y′/G(y) = F (x) is recognized by this test:

Left Side Test. The left side of the equation has factor y′

and it is independent of symbol x.

Right Side Test. The right side of the equation is indepen-
dent of symbols y and y′.

Variables-Separable Method

Determined by the method are the following kinds of solution formulas.

Equilibrium Solutions. They are the constant solutions y = c of y′ =
f(x, y). Find them by substituting y = c in y′ = f(x, y), followed
by solving for c, then report the list of answers y = c for all values
of c.

Non-Equilibrium Solutions. For separable equation y′ = F (x)G(y),
it is a solution y with G(y) 6= 0. It is found by dividing by G(y)
and applying the method of quadrature.

The term equilibrium is borrowed from kinematics. Alternative terms
are rest solution and stationary solution; all mean y′ = 0 in calculus
terms.

Spurious Solutions. If F (x)G(y) = 0 is solved instead of G(y) =
0, then both x and y solutions might be found. The x-solutions are
ignored: they are not equilibrium solutions. Only solutions of the form
y = constant are called equilibrium solutions.

It is important to check the solution to a separable equation, because
certain steps used to arrive at the solution may not be reversible.

For most applications, the two kinds of solutions suffice to determine all
possible solutions. In general, a separable equation may have non-unique
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solutions to some initial value problem. To prevent this from happening,
it can be assumed that F , G and G′ are continuous; see the Picard-
Lindelöf theorem, page 67. If non-uniqueness does occur, then often
the equilibrium and non-equilibrium solutions can be pieced together to
represent all solutions.

Finding Equilibrium Solutions

The search for equilibria can be done without finding the separable form
of y′ = f(x, y). It is enough to solve for y in the equation f(x, y) = 0,
subject to the condition that x is arbitrary. An equilibrium solution y
cannot depend upon x, because it is constant. If y turns out to depend
on x, after solving f(x, y) = 0 for y, then this is sufficient evidence that
y′ = f(x, y) is not separable. Some examples:

y′ = y sin(x− y) It is not separable. The solutions of y sin(x−y) =
0 are y = 0 and x−y = nπ for any integer n. The
solution y = x−nπ is non-constant, therefore the
equation cannot be separable.

y′ = xy(1− y2) It is separable. The equation xy(1− y2) = 0 has
three equilibrium solutions y = 0, y = 1, y = −1.
Equilibrium solutions must be constant solutions.

Algorithm. To find equilibrium solutions, formally substitute y = c
into the differential equation, then solve for c, and report all constant
solutions y = c so found. There can be zero or just one or infinitely
many solutions.

Shortcut. In a given problem, we don’t use a formal substitution at
all, but instead replace y′ by zero (the result when y = constant). So
for y′ = f(x, y) we get the equation f(x, y) = 0 to be solved for y. For
example, y′ = (x+ 1)(y2− 4) becomes 0 = (x+ 1)(y2− 4), equivalent to
y2−4 = 0 or y = 2, y = −2. We don’t use the spurious solution x = −1,
because we are looking for constant solutions of the form y = c, which
in this example are y = 2 and y = −2.

The problem of finding all equilibrium solutions is known to be tech-
nically unsolvable, that is, there is no proven algorithm for finding all
the solutions of G(y) = 0. However, there are some very good numer-
ical methods that apply, including Newton’s method and the bisec-
tion method. Modern computer algebra systems make it practical to
find equilibrium solutions, both symbolic (like y = π) and numeric (like
y = 3.14159), in a single effort.
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Finding Non-Equilibrium Solutions

A given solution y(x) satisfying G(y(x)) 6= 0 throughout its domain of
definition is called a non-equilibrium solution. Then division by G(y(x))
is allowed in the differential equation y′(x) = F (x)G(y(x)). The method
of quadrature applies to the separated equation y′/G(y(x)) = F (x).
Some details:

∫ x
x0

y′(t)dt

G(y(t))
=
∫ x
x0
F (t)dt Integrate both sides of the separated

equation over x0 ≤ t ≤ x.∫ y(x)
y0

du

G(u)
=
∫ x
x0
F (t)dt Apply on the left the change of variables

u = y(t). Define y0 = y(x0).

y(x) = W−1
(∫ x
x0
F (t)dt

)
Define W (y) =

∫ y
y0
du/G(u). Take in-

verses to isolate y(x).

The calculation produces a formula which is strictly speaking a candidate
solution y. It does not prove that the formula works in the equation:
checking the solution is required.

Theoretical Inversion

The function W−1 appearing in the last step above is generally not given
by a formula. Therefore, W−1 rarely appears explicitly in applications
or examples. It is the method that is memorized:

Prepare a separable differential equation by transforming it
to separated form. Then apply the method of quadrature.

The separated form y′ = F (x)G(y) is checked by the separated form
test, Page 83. For example, y′ = (1 + x2)y3 has F = 1 + x2 and G = y3;
quadrature is applied to the divided equation y′/y3 = 1 + x2.

The theoretical basis for using W−1 is a calculus theorem which says that
a strictly monotone continuous function has a continuous inverse. The
fundamental theorem of calculus implies that W (y) is continuous with
nonzero derivative W ′(y) = 1/G(y). Therefore, W (y) is strictly mono-
tone. The cited calculus theorem implies that W (y) has a continuously
differentiable inverse W−1.

Explicit and Implicit Solutions

The variables-separable method gives equilibrium solutions which are
already explicit, that is:
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Definition 1 (Explicit Solution)
A solution of y′ = f(x, y) is called explicit provided it is given by an
equation

y = an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y followed
by an equal sign. Symbols y and = are followed by an expression which
does not contain the symbol y. Examples of explicit equations are y = 0,
y = −1, y = x + 2π, y = sinx + x2 + 10. The definition is strict, for
example y+ 1 = 0 is not explicit because it fails to have y isolated left.
Yes, it can be converted into an explicit equation y = −1.

Definition 2 (Implicit Solution)
A solution of y′ = f(x, y) is called implicit provided it is not explicit.

Equations like 2y = x are not explicit (they are called implicit) because
the coefficient of y on the left is not 1. Similarly, y = x + y2 is not
explicit because the right side contains symbol y. Equation y = eπ is
explicit because the right side fails to contain symbol y (symbol x may be
absent). Applications can leave the non-equilibrium solutions in implicit

form
∫ y(x)
y0

du/G(u) =
∫ x
x0
F (t)dt, with serious effort being expended to

do the indicated integrations.

In special cases, it is possible to find an explicit solution from the implicit
one by algebraic methods. Students find the algebraic methods to be
unmotivated tricks. Computer algebra systems can make this step look
like science instead of art.

Examples

4 Example (Non-separable Equation) Explain why yy′ = x − y2 is not
separable.

Solution: It is tempting to try manipulations like adding y2 to both sides of
the equation, in an attempt to obtain a separable form, but every such trick
fails. The failure of such attempts is evidence that the equation is perhaps not
separable. Failure of attempts does not prove non-separability.

Test I applies to verify that the equation is not separable. Let f(x, y) = x/y−y
and choose x0 = 0, y0 = 1. Then f(x0, y0) 6= 0. Compute as follows:

LHS = f(x, y0)f(x0, y)− f(x0, y0)f(x, y) Identity (2) left side.

= f(x, 1)f(0, y)− f(0, 1)f(x, y) Use x0 = 0, y0 = 1.

= (x− 1)(−y)− (−1)(x/y − y) Substitute f(x, y) = x/y − y.

= −xy + x/y Simplify.

This expression fails to be zero for all (x, y) (e.g., x = 1, y = 2), therefore the
equation is not separable, by Test I.
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Test II also applies to verify the equation is not separable: fx/f = 1/yf = x−y2
is non-constant in x.

5 Example (Separated Form Test Failure) Given yy′ = 1−y2, explain why
the equivalent equation yy′ + y2 = 1, obtained by adding y2 across the
equation, fails the separated form test, page 83.

Solution: The test requires the left side of yy′+y2 = 1 to contain the factor y′.
It doesn’t, so it fails the test. Yes, yy′+ y2 = 1 does pass the other checkpoints
of the test: the left side is independent of x and the right side is independent
of y and y′.

6 Example (Separated Equation) Find for (x+1)yy′ = x−xy2 a separated
equation using the test, page 83.

Solution: The equation usually reported is
yy′

(1− y)(1 + y)
=

x

x+ 1
. It is found

by factoring and division.

The given equation is factored into (1 + x)yy′ = x(1 − y)(1 + y). To pass the
test, the objective is to move all factors containing only y to the left and all
factors containing only x to the right. This is technically accomplished using
division by (x+ 1)(1− y)(1 + y).

To the result of the division is applied the test on page 83: the left side contains
factor y′ and otherwise involves the factor y/(1 − y2), which depends only on
y; the right side is x/(x+ 1), which depends only on x. In short, the candidate
separated equation passes the test.

There is another way to approach the problem, by writing the differential
equation in standard form y′ = f(x, y) where f(x, y) = x(1 − y2)/(1 + x).
Then f(1, 0) = 1/2 6= 0. Define F (x) = f(x, 0)/f(1, 0), G(y) = f(1, y).
We verify F (x)G(y) = f(x, y). A separated form is then y′/G(y) = F (x)
or 2y′/(1− y2) = 2x/(1 + x).

7 Example (Equilibria) Given y′ = x(1− y)(1 + y), find all equilibria.

Solution: The constant solutions y = −1 and y = 1 are the equilibria, as will
be justified.

Equilibria are found by substituting y = c into the differential equation y′ =
x(1− y)(1 + y), which gives the equation

x(1− c)(1 + c) = 0.

The formal college algebra solutions are x = 0, c = −1 and c = 1. However,
we do not seek these college algebra answers! Equilibria are the solutions y = c
such that x(1 − c)(1 + c) = 0 for all x. The conditional for all x causes the
algebra problem to reduce to just two equations: 0 = 0 (from x = 0) and
(1− c)(1 + c) = 0 (from x 6= 0). We solve for c = 1 and c = −1, then report the
two equilibrium solutions y = 1 and y = −1. Spurious algebraic solutions like
x = 0 can appear, which must be removed from equilibrium solution reports.
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8 Example (Non-Equilibria) Given y′ = x2(1 + y), y(0) = y0, find all non-
equilibrium solutions.

Solution: The unique solution is y = (1 + y0)ex
3/3 − 1. Details follow.

The separable form y′ = F (x)G(y) is realized for F (x) = x2 and G(y) = 1 + y.
Sought are solutions with G(y) 6= 0, or simply 1 + y 6= 0.

y′ = x2(1 + y) Original equation.

y′

1 + y
= x2 Divide by 1 + y. Separated form found.

∫ y′

1 + y
dx =

∫
x2dx Method of quadrature.

∫ du

1 + u
=
∫
x2dx Change variables u = y(x) on the left.

ln |1 + y(x)| = x3/3 + c Evaluate integrals. Implicit solution found.

Applications might stop at this point and report the implicit solution. This
illustration continues, to find the explicit solution y = (1 + y0)ex

3/3 − 1.

|1 + y(x)| = ex
3/3+c By definition, lnu = w means u = ew.

1 + y(x) = kex
3/3+c Drop absolute value, k = ±1.

y(x) = kex
3/3+c − 1 Candidate solution. Constants unresolved.

The initial condition y(0) = y0 is used to resolve the constants c and k. First,
|1 + y0| = ec from the first equation. Second, 1 + y0 and 1 + y(x) must have the
same sign (they are never zero), so k(1 + y0) > 0. Hence, 1 + y0 = kec, which

implies the solution is y = kecex
3/3 − 1 or y = (1 + y0)ex

3/3 − 1.

9 Example (Equilibria) Given y′ = x sin(1−y) cos(1+y), find all equilibrium
solutions.

Solution: The infinite set of equilibria are justified below to be

y = 1 + nπ, y = −1 + (2n+ 1)
π

2
, n = 0,±1,±2, . . .

A separable form y′ = F (x)G(y) is verified by defining F (x) = x and G(y) =
sin(1− y) cos(1 + y). Equilibria y = c are found by solving for c in the equation
G(c) = 0, which is

sin(1− c) cos(1 + c) = 0.

This equation is satisfied when the argument of the sine is an integer multiple
of π or when the argument of the cosine is an odd integer multiple of π/2. The
solutions are c− 1 = 0,±π,±2π, . . . and 1 + c = ±π/2,±3π/2, . . ..

Multiple solutions and maple. Equations having multiple solutions may
require CAS setup. Below, the first code fragment returns two solutions, y = 1
and y = −1 + π/2. The second returns all solutions.
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# The default returns two solutions

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

# Special setup returns all solutions

_EnvAllSolutions := true:

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

10 Example (Non-Equilibria) Given y′ = x2 sin(y), y(0) = y0, justify that
all non-equilibrium solutions are given by2

y = 2Arctan
(
tan(y0/2)ex

3/3
)

+ 2nπ.

Solution: A separable form y′ = F (x)G(y) is defined by F (x) = x2 and G(y) =
sin(y). A non-equilibrium solution will satisfy G(y) 6= 0, or simply sin(y) 6= 0.
Define n by y0/2 = Arctan(tan(y0/2)) + nπ, where |Arctan(u)| < π/2. Then

y′ = x2 sin(y) The original equation.

csc(y)y′ = x2 Separated form. Divided by sin(y) 6= 0.∫
csc(y)y′dx =

∫
x2dx Quadrature using indefinite integrals.∫

csc(u)du =
∫
x2dx Change variables u = y(x) on the left.

ln | csc y(x)− cot y(x)| = 1
3x

3 + c Integral tables. Implicit solution found.

Trigonometric Identity. Integral tables make use of the identity tan(y/2) =
csc y − cot y, which is derived from the relations 2θ = y, 1 − cos 2θ = 2 sin2 θ,
sin 2θ = 2 sin θ cos θ. Tables offer an alternate answer for the last integral above,
ln | tan(y/2)|.
The solution obtained at this stage is called an implicit solution, because y has
not been isolated. It is possible to solve for y in terms of x, an explicit solution.
The details:

| csc y − cot y| = ex
3/3+c By definition, lnu = w means u = ew.

csc y − cot y = kex
3/3+c Assign k = ±1 to drop absolute values.

1− cos y

sin y
= kex

3/3+c Then k has the same sign as sin(y),
because 1− cos y ≥ 0.

tan(y/2) = kex
3/3+c Use tan(y/2) = csc y − cot y.

y = 2Arctan
(
kex

3/3+c
)

+ 2nπ Candidate solution, n = 0,±1,±2, . . .

Resolving the Constants. Constants c and k are uniquely resolved for a given
initial condition y(0) = y0. Values x = 0 and y = y0 determine constant c by
the equation tan(y0/2) = kec (two equations back). The condition k sin(y0) > 0
determines k, because sin y0 and sin y have identical signs. If n is defined by
y0/2 = Arctan(tan(y0/2)) + nπ and K = kec = tan(y0/2), then the explicit
solution is

y = 2Arctan
(
Kex

3/3
)

+ 2nπ, K = tan(y0/2).

2While θ = arctanu gives any angle, θ = Arctan(u) gives |θ| < π/2.
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Trigonometric identities and maple. Using the identity csc y − cot y =
tan(y/2), maple finds the same relation. Complications occur without it.

_EnvAllSolutions := true:

solve(csc(y)-cot(y)=k*exp(x^3/3+c),y);

solve(tan(y/2)=k*exp(x^3/3+c),y);

11 Example (Independent of x) Solve y′ = y(1− ln y), y(0) = y0.

Solution: There is just one equilibrium solution y = e ≈ 2.718. Not included
is y = 0, because y(1 − ln y) is undefined for y ≤ 0. Details appear below for
the explicit solution (which includes y = e)

y = e1− (1− ln y0)e−x .

An equation y′ = f(x, y) independent of x has the form y′ = F (x)G(y) where
F (x) = 1. Divide by G(y) to obtain a separated form y′/G(y) = 1. In the
present case, G(y) = y(1 − ln y) is defined for y > 0. To require G(y) 6= 0
means y > 0, y 6= e. Non-equilibrium solutions will satisfy y > 0 and y 6= e.

y′

y(1− ln y)
= 1 Separated form. Assume y > 0 and y 6= e.

∫ y′

y(1− ln y)
dx =

∫
dx Method of quadrature.∫ −du

u
=
∫
dx Substitute u = 1 − ln y on the left. Chain rule

(ln y)′ = y′/y applied; du = −y′dx/y.

− ln |1− ln y(x)| = x+ c Evaluate the integral using u = 1−ln y. Implicit
solution found.

The remainder of the solution contains college algebra details, to find from the
implicit solution all explicit solutions y.

|1− ln y(x)| = e−x−c Use lnu = w equivalent to u = ew.

1− ln y(x) = ke−x−c Drop absolute value, k = ±1.

ln y(x) = 1− ke−x−c Solved for ln y.

y(x) = e1− ke
−x−c

Candidate solution; c and k unresolved.

To resolve the constants, start with y0 > 0 and y0 6= e. To determine k, use the
requirement G(y) 6= 0 to deduce that k(1 − ln y(x)) > 0. At x = 0, it means
k|1− ln y0| = 1− ln y0. Then k = 1 for 0 < y0 < e and k = −1 otherwise.

Let y = y0, x = 0 to determine c through the equation |1 − ln y0| = e−c.
Combining with the value of k gives 1− ln y0 = ke−c.

Assembling the answers for k and c produces the relations

y = e1− ke
−x−c

Candidate solution.

= e1− ke
−ce−x Exponential rule ea+b = eaeb.

= e1− (1− ln y0)e−x Explicit solution. Used ke−c = 1− ln y0.

Even though the solution has been found through legal methods, it remains to
verify the solution. See the exercises.
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Exercises 2.2

Separated Form Test. Test the given
equation by the separated form test on
page 83.

Report whether or not the equation
passes or fails, as written. In this test,
algebraic operations on the equation
are disallowed. See Examples 4 and
5, page 86.

1. y′ = 2

2. y′ = x

3. y′ + y = 2

4. y′ + 2y = x

5. yy′ = 2− x

6. 2yy′ = x+ x2

7. yy′ + sin(y′) = 2− x

8. 2yy′ + cos(y) = x

9. 2yy′ = y′ cos(y) + x

10. (2y + tan(y))y′ = x

Separated Equation. Determine the
separated form y′/G(y) = F (x) for the
given separable equation. See Exam-
ple 6, page 87.

11. (1 + x)y′ = 2 + y

12. (1 + y)y′ = xy

13. y′ =
x+ xy

(x+ 1)2 − 1

14. y′ = sin(x)
1 + y

(x+ 2)2 − 4

15. xy′ = y sin(y) cos(x)

16. x2y′ = y cos(y) tan(x)

17. y2(x− y)y′ =
x2 − y2

x+ y

18. xy2(x+ y)y′ =
y2 − x2

x− y

19. xy2y′ =
y − x
x− y

20. xy2y′ =
x2 − xy
x− y

Equilibrium solutions. Determine
the equilibria for the given equation.
See Examples 7 and 9.

21. y′ = xy(1 + y)

22. xy′ = y(1− y)

23. y′ =
1 + y

1− y

24. xy′ =
y(1− y)

1 + y

25. y′ = (1 + x) tan(y)

26. y′ = y(1 + ln y)

27. y′ = xey(1 + y)

28. xy′ = ey(1− y)

29. xy′ = ey(1− y2)(1 + y)3

30. xy′ = ey(1− y3)(1 + y3)

Non-Equilibrium Solutions. Find
the non-equilibrium solutions for the
given separable equation. See Exam-
ples 8 and 10 for details.

31. y′ = (xy)1/3, y(0) = y0.

32. y′ = (xy)1/5, y(0) = y0.

33. y′ = 1 + x− y − xy, y(0) = y0.

34. y′ = 1 + x+ 2y + 2xy, y(0) = y0.

35. y′ =
(x+ 1)y3

x2(y3 − y)
, y(0) = y0.

36. y′ =
(x− 1)y2

x3(y3 + y)
, y(0) = y0.

37. 2yy′ = x(1− y2)

38. 2yy′ = x(1 + y2)

39. (1 + x)y′ = 1− y, y(0) = y0.
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40. (1− x)y′ = 1 + y, y(0) = y0.

41. tan(x)y′ = y, y(π/2) = y0.

42. tan(x)y′ = 1 + y, y(π/2) = y0.

43.
√
xy′ = cos2(y), y(1) = y0.

44.
√

1− xy′ = sin2(y), y(0) = y0.

45.
√
x2 − 16yy′ = x, y(5) = y0.

46.
√
x2 − 1yy′ = x, y(2) = y0.

47. y′ = x2(1 + y2), y(0) = 1.

48. (1− x)y′ = x(1 + y2), y(0) = 1.

Independent of x. Solve the given
equation, finding all solutions. See Ex-
ample 11.

49. y′ = sin y, y(0) = y0.

50. y′ = cos y, y(0) = y0.

51. y′ = y(1 + ln y), y(0) = y0.

52. y′ = y(2 + ln y), y(0) = y0.

53. y′ = y(y − 1)(y − 2), y(0) = y0.

54. y′ = y(y − 1)(y + 1), y(0) = y0.

55. y′ = y2 + 2y + 5, y(0) = y0.

56. y′ = y2 + 2y + 7, y(0) = y0.

Details in the Examples. Collected
here are verifications for details in the
examples.

57. (Example 7) The equation x(1 −
y)(1 + y) = 0 was solved in the ex-
ample, but x = 0 was ignored, and
only y = −1 and y = 1 were re-
ported. Why?

58. (Example 8) An absolute value
equation |u| = w was replaced by
u = kw where k = ±1. Justify
the replacement using the defini-
tion |u| = u for u ≥ 0, |u| = −u
for u < 0.

59. (Example 8) Verify directly that

y = (1 + y0)ex
3/3− 1 solves the ini-

tial value problem y′ = x2(1 + y),
y(0) = y0.

60. (Example 9) The relation y =
1 +nπ, n = 0,±1,±2, . . . describes
the list . . . , 1−π, 1, 1+π, . . .. Write
the list for the relation y = −1 +
(2n+ 1)π2 .

61. (Example 9) Solve sin(u) = 0 and
cos(v) = 0 for u and v. Supply
graphs which show why there are
infinity many solutions.

62. (Example 10) Explain why y0/2
does not equal Arctan(tan(y0/2)).
Give a calculator example.

63. (Example 10) Establish the iden-
tity tan(y/2) = csc y − cot y.

64. (Example 11) Let y0 > 0. Verify

that y = e1− (1− ln y0)e−x solves

y′ = y(1− ln y), y(0) = y0.


