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The subject of the chapter is the first order differential equation

y′ = f(x, y).

The study includes closed-form solution formulas for special equations,
numerical solutions and some applications to science and engineering.

2.1 Quadrature Method

The method of quadrature refers to the technique of integrating both
sides of an equation, hoping thereby to extract a solution formula.

The term quadrature originates in ancient geometry, where it means
finding area of a plane figure, by constructing a square of equal area.1

Numerical quadrature computes areas enclosed by plane curves from
approximating rectangles, by algorithms such as the rectangular rule

1See Wikipedia, http://en.wikipedia.org/wiki/Quadrature.
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and Simpson’s rule. For symbolic problems, the task is overtaken by
Newton’s integral calculus. The naming convention follows computer
algebra system maple.

Fundamental Theorem of Calculus

The foundation of the study of differential equations rests with Isaac
Newton’s discovery on instantaneous velocities. Details of the calculus
background required appears in Appendix A.1, page 870.

Theorem 1 (Fundamental Theorem of Calculus: Definite Integral)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =

∫ b

a

dF

dx
(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Theorem 2 (Fundamental Theorem of Calculus: Indefinite Integral)
Let G(x) be continuous and let y(x) be continuously differentiable on [a, b].
Then for some constant c,

(a) y(x) =

∫
dy

dx
dx+ c,

(b)
d

dx

∫
G(x)dx = G(x).

Part (a) of the fundamental theorem is used to find a candidate solution
to a differential equation.

Part (b) of the fundamental theorem is used in differential equations to
do an answer check.

The Method of Quadrature

The method is applied to differential equations y′ = f(x, y) in which f is
independent of y. Then symbol y is absent from f(x, y), which implies
f(x, y) is constant or else f(x, y) depends only on the symbol x. The
model differential equation then has the form y′ = F (x) where F is a
given function of the single variable F .

(i) To solve for y(x) in
dy

dx
= F (x), integrate on variable x

across the equation, then use the Fundamental Theorem
of Calculus.

(ii) Check the answer.
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Indefinite Integral Shortcut. Integrate across the equation with in-
definite integrals, then collect all integration constants into symbol c.

Solution with Symbol c. Symbol c initially appears in the expression
obtained for y. If no initial condition was given, then the answer for y
is this expression, which contains the unresolved symbol c. Experts call
this expression the general solution.

Solution with No symbol c. If an initial condition is given in the
form y = y0 at x = x0 (same as y(x0) = y0), then symbol c can be
resolved. For instance, if the answer is y = 2(x − 1) + c and the initial
condition is y(−1) = 3, then y = 2(x − 1) + c with x = −1, y = 3
becomes 3 = 2(−1− 1) + c, and then c = 7. Experts call this expression
a particular solution, meaning the symbol c has been resolved.

Theorem 3 (Existence-Uniqueness for Quadrature Equations)
Let F (x) be continuous on a < x < b. Assume a < x0 < b and −∞ <
y0 <∞. Then the initial value problem

y′ = F (x), y(x0) = y0(1)

has on interval a < x < b the unique solution

y(x) = y0 +

∫ x

x0

F (t)dt.(2)

Details of proof appear on page 79.

Examples

1 Example (Quadrature) Solve y′ = 3ex, y(0) = 0.

Solution:

The final answer is y = 3ex− 3. An answer check appears in the next example.

Details. The shortcut is applied.

dy
dx = 3ex Copy the differential equation.∫

dy
dxdx =

∫
3exdx Integrate across the equation on x.

y(x) + c1 =
∫

3exdx Fundamental theorem of calculus, page 75.

y(x) + c1 = 3ex + c2 Integral table.

y(x) = 3ex + c Where c = c2 − c1 is a constant.

The answer is y = 3ex + c. The symbol c is to be resolved from the initial
condition y(0) = 0, as follows.

0 = y(0) Copy the initial condition (sides reversed).

= (3ex + c)|x=0 Insert y = 3ex + c, the proposed solution.

= 3e0 + c Substitute x = 0.
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= 3 + c Use e0 = 1.

c = −1 Equation 0 = 3 + c solved for c.

Candidate solution. Back-substitute the symbol c answer c = −1 into the
answer y = 3ex+c to obtain the candidate solution y = 3ex+(−3). This answer
can contain errors, in general, due to integration and arithmetic mistakes.

2 Example (Answer Check) Given y′ = 3ex, y(0) = 0 and candidate solu-
tion y(x) = 3ex − 3, display an answer check.

Solution: There are two panels in this answer check: Panel 1: differential
equation check, Panel 2: initial condition check.

Panel 1. We check the answer y = 3ex−3 for the differential equation y′ = 3ex.

The steps are:

LHS = y′ Left side of the differential equation.

= (3ex − 3)
′ Substitute the expression for y.

= 3ex − 0 Sum rule, constant rule and (eu)′ = u′eu.

= RHS Solution verified.

Panel 2. We check the answer y = 3ex−3 against the initial condition y(0) = 0.
Expected is an immediate mental check that e0 = 1 implies the correctness of
y(0) = 0.

The steps will be shown in order to detail the algorithm for checking an initial
condition. The algorithm applies when checking complex algebraic expressions.
Abbreviated versions of the algorithm are used on simple expressions.

LHS = y(0) Left side of the initial condition y(0) = 0.

= (3ex − 3)|x=0 Notation y(x0) means substitute x = x0
into the expression for y.

= 3e0 − 3 Substitute x = 0 into the expression.

= 0 Because e0 = 1.

= RHS Initial condition verified.

River Crossing

A boat crosses a river at fixed speed with power applied perpendicular to
the shoreline. Is it possible to estimate the boat’s downstream location?

The answer is yes. The problem’s variables are

x Distance from shore,

y Distance downstream,

t Time in hours,

w Width of the river,

vb Boat velocity (dx/dt),

vr River velocity (dy/dt).
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The calculus chain rule dy/dx = (dy/dt)/(dx/dt) is applied, using the
symbols vr and vb instead of dy/dt and dx/dt, to give the model equation

dy

dx
=
vr
vb
.(3)

Stream Velocity. The downstream river velocity will be approximated
by vr = kx(w − x), where k > 0 is a constant. This equation gives
velocity vr = 0 at the two shores x = 0 and x = w, while the maximum
stream velocity at the center x = w/2 is (see page 79)

vc =
kw2

4
.(4)

Special River-Crossing Model. The model equation (3) using vr =
kx(w−x) and the constant k defined by (4) give the initial value problem

dy

dx
=

4vc
vbw2

x(w − x), y(0) = 0.(5)

The solution of (5) by the method of quadrature is

y =
4vc
vbw2

(
−1

3
x3 +

1

2
wx2

)
,(6)

where w is the river’s width, vc is the river’s midstream velocity and vb
is the boat’s velocity. In particular, the boat’s downstream drift on
the opposite shore is 2

3w(vc/vb). See Technical Details page 79.

3 Example (River Crossing) A boat crosses a mile-wide river at 3 miles per
hour with power applied perpendicular to the shoreline. The river’s mid-
stream velocity is 10 miles per hour. Find the transit time and the down-
stream drift to the opposite shore.

Solution: The answers, justified below, are 20 minutes and 20/9 miles.

Transit time. This is the time it takes to reach the opposite shore. The
layman answer of 20 minutes is correct, because the boat goes 3 miles in one
hour, hence 1 mile in 1/3 of an hour, perpendicular to the shoreline.

Downstream drift. This is the value y(1), where y is the solution of equation
(5), with vc = 10, vb = 3, w = 1, all distances in miles. The special model is

dy

dx
=

40

3
x(1− x), y(0) = 0.

The solution given by equation (6) is y = 40
3

(
− 1

3x
3 + 1

2x
2
)

and the downstream
drift is then y(1) = 20/9 miles. This answer is 2/3 of the layman’s answer of
(1/3)(10) miles. The explanation is that the boat is pushed downstream at a
variable rate from 0 to 10 miles per hour, depending on its position x.
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Details and Proofs

Proof of Theorem 3:

Uniqueness. Let y(x) be any solution of (1). It will be shown that y(x) is
given by the solution formula (2).

y(x) = y(0) +
∫ x

x0
y′(t)dt Fundamental theorem of calculus, page 873.

= y0 +
∫ x

x0
F (t)dt Use (1). This verifies equation (2).

Answer Check. Let y(x) be given by solution formula (2). It will be shown
that y(x) solves initial value problem (1).

y′(x) =
(
y0 +

∫ x

x0
F (t)dt

)′
Compute the derivative from (2).

= F (x) Apply the fundamental theorem of calculus.

The initial condition is verified in a similar manner:

y(x0) = y0 +
∫ x0

x0
F (t)dt Apply (2) with x = x0.

= y0 The integral is zero:
∫ a

a
F (x)dx = 0.

The proof is complete.

Technical Details for (4): The maximum of a continuously differentiable
function f(x) on 0 ≤ x ≤ w can be found by locating the critical points (i.e.,
where f ′(x) = 0) and then testing also the endpoints x = 0 and x = w. The
derivative f ′(x) = k(w − 2x) is zero at x = w/2. Then f(w/2) = kw2/4. This
value is the maximum of f , because f = 0 at the endpoints.

Technical Details for (6): Let a =
4vc
vbw2

. Then

y = y(0) +
∫ x

0
y′(t)dt Method of quadrature.

= 0 + a
∫ x

0
t(w − t)dt By (5), y′ = at(w − t).

= a
(
− 1

3x
3 + 1

2wx
2
)
. Integral table.

To compute the downstream drift, evaluate y(w) = a
w3

6
or y(w) =

2w

3

vc
vb

.

Exercises 2.1

Quadrature. Find a candidate solu-
tion for each initial value problem and
verify the solution. See Example 1 and
Example 2, page 76.

1. y′ = 4e2x, y(0) = 0.

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

8. y′ = xe−x
2

, y(0) = 0.

9. y′ = tanx, y(0) = 0.

10. y′ = 1 + tan2 x, y(0) = 0.

11. (1 + x2)y′ = 1, y(0) = 0.



80 First Order Differential Equations

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.

19. y′ = sinx cos 2x, y(0) = 0.

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing. A boat crosses a river
of width w miles at vb miles per hour
with power applied perpendicular to
the shoreline. The river’s midstream
velocity is vc miles per hour. Find the
transit time and the downstream drift
to the opposite shore. See Example 3,
page 78, and the details for (6).

21. w = 1, vb = 4, vc = 12

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I. Verify the
identity. Use the fundamental theorem
of calculus part (b), page 75.

29.
∫ x

0
(1 + t)3dt = 1

4

(
(1 + x)4 − 1

)
.

30.
∫ x

0
(1 + t)4dt = 1

5

(
(1 + x)5 − 1

)
.

31.
∫ x

0
te−tdt = −xe−x − e−x + 1.

32.
∫ x

0
tetdt = xex − ex + 1.

Fundamental Theorem II. Differen-
tiate. Use the fundamental theorem of
calculus part (b), page 75.

33.
∫ 2x

0
t2 tan(t3)dt.

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t2dt.

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III. Integrate∫ 1

0
f(x)dx. Use the fundamental the-

orem of calculus part (a), page 75.
Check answers with computer or cal-
culator assist. Some require a clever
u-substitution or an integral table.

37. f(x) = x(x− 1)

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

42. f(x) =
2x

1 + x4
)

43. f(x) = x2ex
3

44. f(x) = x(sin(x2) + ex
2

)

45. f(x) =
1√

−1 + x2

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2

50. f(x) =
4x√

1− 4x2

51. f(x) =
cosx

sinx

52. f(x) =
cosx

sin3 x
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53. f(x) =
ex

1 + ex

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotxx

60. f(x) = secx tanxx

Integration by Parts. Integrate∫ 1

0
f(x)dx by parts,

∫
udv = uv −∫

vdu. Check answers with computer
or calculator assist.

61. f(x) = xex

62. f(x) = xe−x

63. f(x) = ln |x|

64. f(x) = x ln |x|

65. f(x) = x2e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

68. f(x) = x sinhx

69. f(x) = x arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions. Integrate f by
partial fractions. Check answers with
computer or calculator assist.

71. f(x) =
x+ 4

x+ 5

72. f(x) =
x− 2

x− 4

73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

76. f(x) =
x− 1

(x+ 1)(x+ 2))

77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods. Integrate f by
using the suggested u-substitution or
method. Check answers with com-
puter or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1

x2 + 1
, use long division.

86. f(x) =
x4 + 2

x2 + 1
, use long division.


