Final Exam Differential Equations 2280

Tuesday, 30 April 2019, 7:30am to 10:15am
Instructions: No calculators, notes, tables or books. No answer check is expected. A correct answer without details counts 25%.

Chapters 1 and 2: First Order Differential Equations

Definitions. An equilibrium solution is a constant solution, found by replacing all derivatives by zero, then solve for y. If y found by this method is not constant, then the method fails. For $y^{\prime}+p y=q$, the homogeneous equation is $y^{\prime}+p y=0$. An equation $y^{\prime}=f(x, y)$ is separable provided functions F, G exist such that $f(x, y)=F(x) G(y)$.
(a) [20\%] Apply a test to the equation $y^{\prime}=x+y+y^{2}$, showing it fails to be separable.
(b) $[30 \%]$ The problem $x \frac{d y}{d x}=x y+3 x+2 y+6$ is both linear and separable. It can be solved by superposition $y=y_{h}+y_{p}$, where y_{h} is the homogeneous solution and y_{p} is an equilibrium solution. Show details for the answers $y_{h}=c x^{2} e^{x}$ and $y_{p}=-3$.
(c) $[20 \%]$ Solve the linear homogeneous equation $x^{2} \frac{d y}{d x}+2 y=x y$.
(d) [30\%] Solve $2 \frac{d}{d t} v(t)=5 e^{-t}+\frac{1}{2} v(t), v(0)=0$ by the linear integrating factor method. Show all steps.

Chapter 3: Linear Equations of Higher Order

(a) $[20 \%]$ Solve for the general solution: $y^{\prime \prime}+6 y^{\prime}+73 y=730$
(b) [30\%] Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=F_{0} \cos (\omega t)$, which represents a damped forced spring-mass system with $m=5, c=2, k=10$, answer questions (c1), (c2).
(c1) Compute the frequency ω for practical mechanical resonance.
(c2) Classify the homogeneous problem as over-damped (non-oscillatory), critically-damped or under-damped (oscillatory).
(c) $[20 \%]$ Define $y(x)=x \cos (3 x)+3 x^{3} e^{x}$. Construct the characteristic equation of a linear nth order homogeneous differential equation of least order n which has $y(x)$ as a particular solution.
(d) [30\%] An nth order non-homogeneous differential equation is specified by its characteristic equation $(r+1)^{3}\left(r^{2}+100\right)=0$ and the forcing term $f(x)=x^{2}+$ $x^{2} e^{-x}+x e^{x}+\sin (10 x)$. Find the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate undetermined coefficients.

Chapters 4 and 5: Systems of Differential Equations

(a) $[20 \%]$ Let $A=\left(\begin{array}{lll}0 & 2 & 1 \\ 2 & 0 & 1 \\ 0 & 0 & 5\end{array}\right), \overrightarrow{\mathbf{v}}_{1}=\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right), \overrightarrow{\mathbf{v}}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \overrightarrow{\mathbf{v}}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)$.

The eigenpairs of A are $\left(-2, \overrightarrow{\mathbf{v}}_{1}\right),\left(2, \overrightarrow{\mathbf{v}}_{2}\right),\left(5, \overrightarrow{\mathbf{v}}_{3}\right)$.
(a1) Apply the Eigenanalysis Method to solve $\frac{d}{d t} \overrightarrow{\mathbf{x}}(t)=A \overrightarrow{\mathbf{x}}(t)$.
(a2) Show details for computing eigenpair ($2, \overrightarrow{\mathbf{v}}_{2}$).
Expected: Show linear algebra details for computing $\overrightarrow{\mathbf{v}}_{2}$ for eigenvalue $\lambda=2$. This involves row reduction plus display of the scalar solution and the vector solution.
(b) $[20 \%]$ Find the scalar general solution of the 2×2 system

$$
\left\{\begin{array}{l}
x^{\prime}=7 x+2 y, \quad \text { or } \quad \frac{d}{d t}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}
7 & 2 \\
2 & 7
\end{array}\right)\binom{x(t)}{y(t)}, 2 x+7 y
\end{array}\right.
$$

by the Cayley-Hamilton-Ziebur Method, using the textbook's Chapter 4 shortcut.
(c) [30\%] Assume a 3×3 system $\frac{d}{d t} \overrightarrow{\mathbf{u}}=A \overrightarrow{\mathbf{u}}$ has a vector general solution

$$
\overrightarrow{\mathbf{u}}(t)=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{r}
-c_{1} e^{5 t}+c_{2} e^{8 t} \\
c_{1} e^{5 t}+c_{2} e^{8 t} \\
c_{3} e^{t}
\end{array}\right) .
$$

(c1) Compute a 3×3 fundamental matrix $\Phi(t)$.
(c2) Write a formula for the exponential matrix $e^{A t}$ as an explicit matrix product. Do not multiply or simplify the product.
(c3) Let $\overrightarrow{\mathbf{c}}=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$. Display an explicit matrix-vector product for the solution $\overrightarrow{\mathbf{u}}(t)$ of the initial value problem $\frac{d}{d t} \overrightarrow{\mathbf{u}}=A \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{u}}(0)=\overrightarrow{\mathbf{c}}$. Do not multiply or simplify the product.
(d) $[30 \%]$ Consider the 3×3 linear homogeneous system

$$
\left\{\begin{array}{lll}
x^{\prime}= & 6 x-2 y \\
y^{\prime} & = & -2 x+6 y, \\
z^{\prime} & = & y+z
\end{array} \quad \text { or } \quad \frac{d}{d t} \overrightarrow{\mathbf{u}}(t)=\left(\begin{array}{rrr}
6 & -2 & 0 \\
-2 & 6 & 0 \\
0 & 1 & 1
\end{array}\right) \overrightarrow{\mathbf{u}}(t)\right.
$$

Solve the system by the most efficient method.

Chapter 6: Dynamical Systems

Consider the nonlinear dynamical system

$$
\left\{\begin{array}{l}
x^{\prime}=16 x-4 x^{2}-x y \tag{1}\\
y^{\prime}=7 y-y^{2}-x y
\end{array}\right.
$$

(a) [20\%] Find the four equilibrium points for nonlinear system (1). One of these is $x=3, y=4$.
(b) $[20 \%]$ Compute the Jacobian matrix $J(x, y)$ for nonlinear system (1). Then evaluate $J(x, y)$ at equilibrium point $x=3, y=4$.
(c) [30\%] Consider nonlinear system (1). Classify the linearization at equilibrium point $x=3, y=4$ as a node, spiral, center, saddle. Do not sub-classify a node.
(d) $[30 \%]$ Consider nonlinear system (1). Determine the possible classification of node, spiral, center or saddle and corresponding stability for equilibrium $x=3, y=4$ according to the Pasting Theorem, which is Theorem 2 in section 6.2 (Stability of Almost Linear Systems). State precisely the two exceptions of the pasting theorem, then explain how the theorem applies to nonlinear system (1) at $x=3, y=4$.

Chapter 7: Laplace Theory

Symbol $\delta(t)$ is the Dirac impulse. Symbol $u(t)$ is the unit step. Assumed below is experience with the following. Rules have precise hypotheses, omitted here for brevity.

Convolution Theorem. $\mathcal{L}\left(g_{1}\right) \mathcal{L}\left(g_{2}\right)=\mathcal{L}\left(\int_{0}^{t} g_{1}(t-x) g_{2}(x) d x\right)$
Periodic Function Theorem. $f(t+p)=f(t)$ implies $\mathcal{L}(f(t))=\frac{\int_{0}^{p} f(t) d t}{1-e^{-p s}}$
Second Shifting Theorem Forward. $\mathcal{L}(g(t) u(t-a))=e^{-a s} \mathcal{L}\left(\left.g(t)\right|_{t->t+a}\right)$
Second Shifting Theorem Backward. $e^{-a s} \mathcal{L}(f(t))=\mathcal{L}(f(t-a) u(t-a))$
Dirac Impulse Identity. $\int_{0}^{\infty} W(x) d u(t-a)=W(a)$. Formally $\delta(t)=d u(t)$. Then $\mathcal{L}(\delta(t-a))=e^{-a s}$ for $a \geq 0$.
Resolvent Identity. $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{F}}(t)$ has identity $(s I-A) \mathcal{L}(\overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{u}}(0)+\mathcal{L}(\overrightarrow{\mathbf{F}})$.
Exponential Order. This means $|f(x)| \leq M e^{\alpha x}$ for some $M>0$ and real number α.
(a) $[20 \%]$ Let $f(t)$ be continuous and of exponential order. Define $F(s)=\mathcal{L}(f(t))$. Prove the Final Value Theorem: $\lim _{s \rightarrow \infty} F(s)=0$ (succinctly $F(\infty)=0$).
(b) [20\%] Illustrate the convolution theorem by solving for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s} \frac{1}{s+1}$. Check the answer with partial fractions.
(c) $[20 \%]$ Solve for $f(t)$ using the second shifting theorem: $\mathcal{L}(f(t))=e^{-2 s} \frac{1}{s+1}$.
(d) [20\%] Symbol $\delta(t)$ is the Dirac impulse. Derive an expression for $\mathcal{L}(x(t))$ for the impulse problem

$$
x^{\prime \prime}(t)+100 x(t)=5 \delta(t-\pi), \quad x(0)=0, \quad x^{\prime}(0)=1 .
$$

To save time, do not solve for $x(t)$.
(e) $[20 \%]$ Laplace Theory applied to the forced linear dynamical system

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = 4 x - 2 y + 2 t , } \\
{ y ^ { \prime } = - 2 x + 4 y , } \\
{ x (0) = 0 , y (0) = 0 , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\overrightarrow{\mathbf{u}}^{\prime}=\left(\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right) \overrightarrow{\mathbf{u}}+\binom{2 t}{0} \\
\overrightarrow{\mathbf{u}}(0)=\binom{0}{0}
\end{array}\right.\right.
$$

produces the formulas

$$
\mathcal{L}(x(t))=\frac{2 s-8}{s^{2}(s-2)(s-6)}, \quad \mathcal{L}(y(t))=\frac{-4}{s^{2}(s-2)(s-6)} .
$$

Display the Resolvent Method solution steps that produce these formulas. To save time, do not solve for $x(t)$ or $y(t)$.

Chapter 9: Fourier Series and Partial Differential Equations

In part (a), let $f_{0}(x)=2$ on the interval $1<x<2, f_{0}(x)=0$ for all other values of x on $-2 \leq x \leq 2$. Let $f(x)$ be the periodic extension of f_{0} to the whole real line, of period 4 . The Fourier series of $f(x)$ on $|x| \leq L$ is

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x / L)+b_{n} \sin (n \pi x / L)
$$

Formulas exist for a_{n}, b_{n} expressed in terms of f, using inner product spaces.
(a) [20\%] Compute the Fourier coefficients a_{5} and b_{5} of $f(x)$ on [-2,2]. Warning: f is neither even nor odd.

In part (b), let $g_{0}(x)=1$ on the interval $-2<x<0, g_{0}(x)=2$ on the interval $0<x<2, g_{0}(x)=0$ for all other values of x on $-2 \leq x \leq 2$. Let $g(x)$ be the periodic extension of g_{0} to the whole real line, of period 4 .
(b) [10\%] Find all values of x in $-3<x<5$ for which the Fourier series of g will exhibit Gibb's over-shoot.
(c) $[10 \%]$ Assume $h(x)$ is a piecewise continuous function on $(-\infty, \infty)$. Let $H(x)$ be the Fourier series of $h(x)$ on $-L \leq x \leq L$. Does $H(0)=h(0)$ hold no matter the choice of h ? Cite a theorem or invent a counterexample.
(d) $[30 \%]$ Heat Conduction in a Rod.

Let $L=2$ (rod length), $k=1$ (conduction constant). Solve the rod problem on $0 \leq x \leq L, t \geq 0$:

$$
\begin{cases}u_{t} & =k u_{x x}, \\ u(0, t) & =0 \\ u(L, t) & =0 \\ u(x, 0) & =\sum_{n=1}^{\infty} \frac{1}{n+1} \sin (2 n \pi x)\end{cases}
$$

DEFINITION. The normal modes for the string equation $u_{t t}=c^{2} u_{x x}$ on $0<x<L, t>0$ are given by the functions

$$
\sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right), \quad \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right) .
$$

Each normal mode is a solution of the string equation. A superposition of normal modes is also a solution of the string equation.
(e) $[30 \%]$ Vibration of a Finite String.

Let $L=4$ (string length), $c=4$ (wave speed). Solve the finite string vibration problem on $0 \leq x \leq L, t>0$:

$$
\left\{\begin{array}{l}
u_{t t}(x, t)=c^{2} u_{x x}(x, t) \\
u(0, t)=0, \\
u(4, t)=0 \\
u(x, 0)=\sin (5 \pi x)+5 \sin (7 \pi x) \\
u_{t}(x, 0)=\sin (7 \pi x)+12 \sin (15 \pi x)
\end{array}\right.
$$

