Differential Equations 2280
Midterm Exam 3
Exam Date: 24 April 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%] Find by variation of parameters a particular solution y, for the equation y” = 2 + 6x. Show
all steps in variation of parameters. Check the answer by quadrature.

(b) [10%] A particular solution of the equation LI” 4+ RI' 4+ (1/C)I = Iycos(10t) happens to be
I(t) = 5cos(10t) + et sin(v/17t) — /17sin(10¢). Assume L, R, C all positive. Find the unique periodic
steady-state solution Igg.

(c) [40%] Find the Beats solution for the forced undamped spring-mass problem
2" + 64z = 39cos(5t), x(0) = 2'(0) = 0.
It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save

time, please don’t convert to phase-amplitude form.

(d) [10%] Given 5z"(t) +2a'(t) +2z(t) = 0, which represents a damped spring-mass system with m = 5,
c =2, k=2, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for z(t).

(e) [10%)] Determine the practical resonance frequency w for the spring-mass equation

22" + 72’ + 502 = 500 cos(wt).



Answers and Solution Details:

All in progress.

Part (a) Answer: y, = 2 + 2%

Variation of Parameters.

Solve 3y’ = 0 to get yp, = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y5 — yjy2 = 1.
Then for f(z) = 2 + 6z,

—f f
Yp = yl/yQde—i—yg/ylex,
Yp = 1/—x(2+6x)d:c+x/1(2+633)da:,

yp = —1(2? + 22°) + 2(22 + 32?),
Yp = 2 + 23
This answer is checked by quadrature, applied twice to y” = 2 + 6z with initial conditions zero.

Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit
zero at infinity. Then xss(t) = 5cos(10t) — v/17sin(10¢).

Part (c) The answer is 2(t) = — cos(8t) + cos(5t).

Use undetermined coefficients trial solution z = dj cosbt + dysinbt. Then di = 1, do = 0, and finally
z,(t) = cos(5t). The characteristic equation 72 + 64 = 0 has roots +8i with corresponding Euler solu-
tion atoms cos(8t),sin(8t). Then z(t) = c1 cos(8t) + casin(8t). The general solution is x = xp, + ).
Now use z(0) = 2/(0) = 0 to determine ¢; = —1,c2 = 0, which implies the particular solution z(t) =
— cos(8t) + cos(5t).

Part (d) Use the quadratic formula to decide. The number under the radical sign in the formula, called
the discriminant, is b> — dac = 22 — 4(5)(2) = —36, therefore there are two complex conjugate roots and the
equation is under-damped. Alternatively, factor 512 4 2r + 2 to obtain the roots and atoms, then classify
as under-damped.

k c? 151
Part = — — —= =/ —.
art (e) w “m 52 \/ S

Use this page to start your solution.
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Chapters 4 and 5

2. (Systems of Differential Equations)

(a) [30%)] Display eigenanalysis details for the 3 x 3 matrix

A:

S = Ot

11
5 1 |,
05

then display the vector general solution x(t) of x'(t) = Ax(t).
(b) [40%] The 3 x 3 triangular matrix

A=

S O

1
4
0

ol = O

represents a linear cascade, such as found in brine tank models.

Part 1. Use the linear integrating factor method to find the vector general solution x(t) of
x'(t) = Ax(t).
Part 2. Explain why the eigenanalysis method fails for this example.

(c) [30%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system
2 =5x+4y, v =—4x+ by,
which has complex eigenvalues A = 5 =+ 4.

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).
Part 2. Report a fundamental matrix ®(¢).



Answers and Solution Details:

Part (a) The details should solve the equation |A — AI| = 0 for the three eigenvalues A\ = 6,5,4.
Then solve the three systems (A — \I)v' = 0 for eigenvector ¥, for A = 6,5, 4.
The eigenpairs are

1 -1 1
6, 1 |; 5,1 =1 |; 4,1 —1
0 1 0
The eigenanalysis method implies
1 -1 1
x(t) = e 1 | +ee® | -1 | +ege®| -1
0 1 0

Part (b) The answer: z = c3e® + cate + cre*, y = cze® + coett, 2 = c3edt.
Solution b(1) Write the system in scalar form

¥ = dx+y,
y = dy+z,
Z = bz

Solve the last equation 2’ = 5z as
____constant — aePt
integrating factor ~ 3% -

The second equation is
Yy =4y + cge™
The linear integrating factor method applies.

y — 4y = cze™
(Wy)'
w

Zz =

= 03e5t, where W = e~ %,

(Wy) = cgWed
(€f4ty)/ — 03€f4te5t

e 4ty = c3el + co.

’y — 36 4 626415‘

Stuff the expression into the first differential equation:
¥ =4z +y = 4x + c3e® + coet?

Then solve with the linear integrating factor method.

x — 4z = c3et + cpett
Wax) _
(W) = c3e” + cpe!, where W = e=#. Cross-multiply:

5

(e742) = czedle™ 4 coele™, then integrate:
e Hr = cset +cat+ 1

Then divide by e

’x = 03e5t + 02t64t + 61€4t ‘

Solution b(2).

The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply.

Part (c) The equations
¥ =bx+4y, 1y =—4x+5y



have coefficient matrix A = < ;l ) with characteristic equation (A—>5)?+416 = 0. The roots are 54 4i.

The Euler atoms are e cos(4t), e sin(4t).

Solution c(1).

By C-H-Z, x = c1e” cos(4t) + cae’ sin(4t). lsolate y from the first differential equation 2/ = 5x + 4y,
obtaining the formula 4y = 2’/ — 52 = 5z + €5 (—4c; sin(4t) + deg cos(4t)) — br = —4deiesin(4t) +
4cged cos(4t). Then the solution formulas are

x = c1e% cos(4t) + o€’ sin(4t), y(t) = —c1esin(4t) + o€’ cos(4t).

Solution c(2)
A fundamental matrix ®(¢) is found by taking partial derivatives on the symbols ¢1, co. The answer is exactly

the Jacobian matrix of with respect to variables ¢y, cs.

et cos(4t) et sin(4t)

() = < —edtsin(t) e cos(t) >

Use this page to start your solution.
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Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the equilibrium
point @ = 0 as a saddle, center, spiral or node. Sub-classification into improper or proper node is not

required.
T B I
-2 1

(b) Consider the nonlinear dynamical system

¥ = x—2y%+2y+32,
y = 2x(z+2y).

An equilibrium point is © = —8, y = 4. Compute the Jacobian matrix A = J(—8,4) of the linearized
system at this equilibrium point.

/

(c) Consider the soft nonlinear spring system { f;?, s

= —bx—2y+ 223

At equilibrium point 2 = 0, y = 0, the Jacobian matrix is A = J(0,0) = ( _g _; )
(1) Determine the stability at ¢ = oo and the phase portrait classification saddle, center,
spiral or node at @ = 0 for the linear dynamical system %ﬁ = Ad.
(2) Apply the Pasting Theorem to classify z = 0, y = 0 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.
(3) Repeat the classification details of the previous two parts (1), (2) for the other two

equilibrium points (2,0), (—2,0), for which the Jacobian is A = J(£2,0) = ( 18 _; )



Answers and Solution Details:

Part (a) Answer: unstable saddle.

It is an unstable saddle. Details: The eigenvalues of A are roots of 72 + 2 — 1 = 0, which are real roots
a=1+2—1,b=—+/2— 1 having opposite signs. No rotation eliminates the center and spiral. Finally, the
atoms e, et have limit infinity, zero at t = oo, therefore the system cannot be a node [nodes have limit
(0,0) at one of t = 00 ot t = —o0]. So it must be a saddle.

o 0 1 0 1
Part (b) The Jacobian is J(x,y) = ( 54158 o ) Then A= J(—8,4) = ( 5 g )

Part (c)

Solution (1)

The Jacobian is J(z,y) = < 15 0 1 ) Then A = J(0,0) = ( 0 1 ) The eigenvalues of
’ -5+ 1222 -2 ’ -5 —2

A are found from 72 + 2r + 5 = 0, giving complex conjugate roots —1 + 2i. Because trig functions appear

in the Euler solution atoms, then rotation happens, and the classification must be a center or a spiral. The

Euler solution atoms limit to zero at t = oo, therefore it is a spiral and we report a stable spiral for the

linear problem @ = A@ at equilibrium @ = 0.

Solution (2)
Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system.
Report: stable spiral at z =0, y = 0.

Solution (3)

The Jacobian is J(z,y) = < 15 0 1 ) Then A = J(£2,0) = < 0 1 > The eigenvalues of
’ -5+ g% -2 ’ 10 —2

A are found from 72427 — 10 = 0, roots = —1++/11. The Euler atoms are e®, e where a, b have opposite

sign. No rotation implies a node or a saddle. Because the atoms limit to (00,0) at ¢ = oo, then the node

is eliminated and the equilibrium is a saddle. The Pasting Theorem implies the saddle is transferred to the

nonlinear phase portrait. Report: unstable saddle.

Use this page to start your solution.



