
Differential Equations 2280
Midterm Exam 3

Exam Date: 24 April 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%] Find by variation of parameters a particular solution yp for the equation y′′ = 2 + 6x. Show
all steps in variation of parameters. Check the answer by quadrature.

(b) [10%] A particular solution of the equation LI ′′ + RI ′ + (1/C)I = I0 cos(10t) happens to be
I(t) = 5 cos(10t) + e−2t sin(

√
17t)−

√
17 sin(10t). Assume L,R,C all positive. Find the unique periodic

steady-state solution Iss.

(c) [40%] Find the Beats solution for the forced undamped spring-mass problem

x′′ + 64x = 39 cos(5t), x(0) = x′(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save
time, please don’t convert to phase-amplitude form.

(d) [10%] Given 5x′′(t)+2x′(t)+2x(t) = 0, which represents a damped spring-mass system with m = 5,
c = 2, k = 2, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for x(t).

(e) [10%] Determine the practical resonance frequency ω for the spring-mass equation

2x′′ + 7x′ + 50x = 500 cos(ωt).



Answers and Solution Details:

All in progress.
Part (a) Answer: yp = x2 + x3.
Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2 − y′1y2 = 1.

Then for f(x) = 2 + 6x,

yp = y1

∫
y2
−f
W

dx+ y2

∫
y1
f

W
dx,

yp = 1

∫
−x(2 + 6x)dx+ x

∫
1(2 + 6x)dx,

yp = −1(x2 + 2x3) + x(2x+ 3x2),
yp = x2 + x3.
This answer is checked by quadrature, applied twice to y′′ = 2 + 6x with initial conditions zero.

Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit
zero at infinity. Then xss(t) = 5 cos(10t)−

√
17 sin(10t).

Part (c) The answer is x(t) = − cos(8t) + cos(5t).
Use undetermined coefficients trial solution x = d1 cos 5t + d2 sin 5t. Then d1 = 1, d2 = 0, and finally
xp(t) = cos(5t). The characteristic equation r2 + 64 = 0 has roots ±8i with corresponding Euler solu-
tion atoms cos(8t), sin(8t). Then xh(t) = c1 cos(8t) + c2 sin(8t). The general solution is x = xh + xp.
Now use x(0) = x′(0) = 0 to determine c1 = −1, c2 = 0, which implies the particular solution x(t) =
− cos(8t) + cos(5t).

Part (d) Use the quadratic formula to decide. The number under the radical sign in the formula, called
the discriminant, is b2− 4ac = 22− 4(5)(2) = −36, therefore there are two complex conjugate roots and the
equation is under-damped. Alternatively, factor 5r2 + 2r+ 2 to obtain the roots and atoms, then classify
as under-damped.

Part (e) ω =

√
k

m
− c2

2m2
=

√
151

8
.

Use this page to start your solution.
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Chapters 4 and 5

2. (Systems of Differential Equations)

(a) [30%] Display eigenanalysis details for the 3× 3 matrix

A =

 5 1 1
1 5 1
0 0 5

 ,
then display the vector general solution x(t) of x′(t) = Ax(t).

(b) [40%] The 3× 3 triangular matrix

A =

 4 1 0
0 4 1
0 0 5

 ,
represents a linear cascade, such as found in brine tank models.

Part 1. Use the linear integrating factor method to find the vector general solution x(t) of
x′(t) = Ax(t).

Part 2. Explain why the eigenanalysis method fails for this example.

(c) [30%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

x′ = 5x+ 4y, y′ = −4x+ 5y,

which has complex eigenvalues λ = 5± 4i.

Part 1. Show the details of the method, finally displaying formulas for x(t), y(t).

Part 2. Report a fundamental matrix Φ(t).



Answers and Solution Details:

Part (a) The details should solve the equation |A − λI| = 0 for the three eigenvalues λ = 6, 5, 4.
Then solve the three systems (A− λI)~v = ~0 for eigenvector ~v, for λ = 6, 5, 4.
The eigenpairs are

6,

 1
1
0

 ; 5,

 −1
−1

1

 ; 4,

 1
−1

0

 .
The eigenanalysis method implies

x(t) = c1e
6t

 1
1
0

+ c2e
5t

 −1
−1

1

+ c3e
4t

 1
−1

0

 .

Part (b) The answer: x = c3e
5t + c2te

4t + c1e
4t, y = c3e

5t + c2e
4t, z = c3e

5t.
Solution b(1) Write the system in scalar form

x′ = 4x+ y,
y′ = 4y + z,
z′ = 5z.

Solve the last equation z′ = 5z as
z = constant

integrating factor = c3e
5t.

z = c3e
5t

The second equation is
y′ = 4y + c3e

5t

The linear integrating factor method applies.
y′ − 4y = c3e

−5t

(Wy)′

W
= c3e

5t, where W = e−4t,

(Wy)′ = c3We5t

(e−4ty)′ = c3e
−4te5t

e−4ty = c3e
t + c2.

y = c3e
5t + c2e

4t

Stuff the expression into the first differential equation:
x′ = 4x+ y = 4x+ c3e

5t + c2e
4t

Then solve with the linear integrating factor method.
x′ − 4x = c3e

5t + c2e
4t

(Wx)′

W
= c3e

5t + c2e
4t, where W = e−4t. Cross-multiply:

(e−4tx)′ = c3e
5te−4t + c2e

4te−4t, then integrate:
e−4tx = c3e

t + c2 t+ c1
Then divide by e−4t:

x = c3e
5t + c2te

4t + c1e
4t

Solution b(2).
The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply.

Part (c) The equations
x′ = 5x+ 4y, y′ = −4x+ 5y



have coefficient matrix A =

(
5 4
−4 5

)
with characteristic equation (λ−5)2+16 = 0. The roots are 5±4i.

The Euler atoms are e5t cos(4t), e5t sin(4t).
Solution c(1).
By C-H-Z, x = c1e

5t cos(4t) + c2e
5t sin(4t). Isolate y from the first differential equation x′ = 5x + 4y,

obtaining the formula 4y = x′ − 5x = 5x + e5t (−4c1 sin(4t) + 4c2 cos(4t)) − 5x = −4c1e
5t sin(4t) +

4c2e
5t cos(4t). Then the solution formulas are

x = c1e
5t cos(4t) + c2e

5t sin(4t), y(t) = −c1e5t sin(4t) + c2e
5t cos(4t).

Solution c(2)
A fundamental matrix Φ(t) is found by taking partial derivatives on the symbols c1, c2. The answer is exactly

the Jacobian matrix of

(
x
y

)
with respect to variables c1, c2.

Φ(t) =

(
e5t cos(4t) e5t sin(4t)
−e5t sin(t) e5t cos(t)

)
.

Use this page to start your solution.
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Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) Determine whether the unique equilibrium ~u = ~0 is stable or unstable. Then classify the equilibrium
point ~u = ~0 as a saddle, center, spiral or node. Sub-classification into improper or proper node is not
required.

~u′ =

(
−3 1
−2 1

)
~u

(b) Consider the nonlinear dynamical system

x′ = x− 2y2 + 2y + 32,
y′ = 2x(x+ 2y).

An equilibrium point is x = −8, y = 4. Compute the Jacobian matrix A = J(−8, 4) of the linearized
system at this equilibrium point.

(c) Consider the soft nonlinear spring system

{
x′ = y,
y′ = −5x− 2y + 5

4x
3.

At equilibrium point x = 0, y = 0, the Jacobian matrix is A = J(0, 0) =

(
0 1
−5 −2

)
.

(1) Determine the stability at t = ∞ and the phase portrait classification saddle, center,
spiral or node at ~u = ~0 for the linear dynamical system d

dt~u = A~u.

(2) Apply the Pasting Theorem to classify x = 0, y = 0 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.

(3) Repeat the classification details of the previous two parts (1), (2) for the other two

equilibrium points (2, 0), (−2, 0), for which the Jacobian is A = J(±2, 0) =

(
0 1

10 −2

)
.



Answers and Solution Details:

Part (a) Answer: unstable saddle.
It is an unstable saddle. Details: The eigenvalues of A are roots of r2 + 2r − 1 = 0, which are real roots
a =
√

2 − 1, b = −
√

2 − 1 having opposite signs. No rotation eliminates the center and spiral. Finally, the
atoms eat, ebtt have limit infinity, zero at t = ∞, therefore the system cannot be a node [nodes have limit
(0, 0) at one of t =∞ ot t = −∞]. So it must be a saddle.

Part (b) The Jacobian is J(x, y) =

(
0 1

−5 + 15
4 x

3 −2

)
. Then A = J(−8, 4) =

(
0 1
−5 −2

)
.

Part (c)
Solution (1)

The Jacobian is J(x, y) =

(
0 1

−5 + 15
4 x

2 −2

)
. Then A = J(0, 0) =

(
0 1
−5 −2

)
. The eigenvalues of

A are found from r2 + 2r + 5 = 0, giving complex conjugate roots −1± 2i. Because trig functions appear
in the Euler solution atoms, then rotation happens, and the classification must be a center or a spiral. The
Euler solution atoms limit to zero at t = ∞, therefore it is a spiral and we report a stable spiral for the
linear problem ~u′ = A~u at equilibrium ~u = ~0.

Solution (2)
Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system.
Report: stable spiral at x = 0, y = 0.

Solution (3)

The Jacobian is J(x, y) =

(
0 1

−5 + 15
4 x

2 −2

)
. Then A = J(±2, 0) =

(
0 1

10 −2

)
. The eigenvalues of

A are found from r2 +2r−10 = 0, roots = −1±
√

11. The Euler atoms are eat, ebt where a, b have opposite
sign. No rotation implies a node or a saddle. Because the atoms limit to (∞, 0) at t = ∞, then the node
is eliminated and the equilibrium is a saddle. The Pasting Theorem implies the saddle is transferred to the
nonlinear phase portrait. Report: unstable saddle.

Use this page to start your solution.


