
Least squares in linear regression 

Linear regression is a traditional entry point into the extremely useful, exciting and trending area 

of computer science called machine learning.  Which for our basic purpose means that a service or 

program can “learn” from data without a programmer explicitly intervening to change things.  Some of 

people favorite computer features such as targeted advertising and predictive text use machine learning 

algorithms. Or maybe for an example people actually like a service like Spotify.  At its core linear 

regression algorithms are a predictive analysis of data. In its basic form it determines the relationship 

between a dependent variable and an independent variable (more than one are possible). Some of its 

best use cases involve time ordered data, or just continuous variable data in general that you want a 

numerical answer for. In its most basic form, we have the equation �̂�𝑖 = 𝑏0 + 𝑏1𝑥𝑖 and if you think it 

looks like an equation for a line you would be correct. What you are looking at is the equation for the 

best fit line where 𝑏0  is some constant, 𝑏1 is the regression coefficient, 𝑥𝑖  is the independent variable, 

and �̂�𝑖   is the predicted value. (Programs, 2018) 

To actually use linear regression correctly there are a few key assumptions that need to be met 

or your regression model is going to have flaws some of which are: Linear relationship between 

dependent and independent vars, Multivariate normality (normal distribution). No multicollinearity 

which happens when independent variables are correlated with each other. No auto-correlation which is 

where y(x) is not independent from other values such as y(x-1), y(x+1), etc. Homoscedasticity which is 

where residuals are equals across the regression line, residuals being the difference between the 

predicted value and observed value. (Solutions, 2019) 

The data and equations 

In order to do some calculations and show how all of this works we need some data, so below is 

10 height/weight data points from people from (Programs, 2018).  

ht wt 

63 127 

64 121 

66 142 

69 157 

69 162 

71 156 

71 169 

72 165 

73 181 

75 208 

Here is what it looks like as a scatter plot 



 

In order to find the best fit line one way is using the method of least squares. To do so you take 

the sum of squared prediction errors which the sum of squares of  𝑒𝑖 = 𝑦𝑖 − �̂�𝑖. Where 𝑒𝑖 is the error of 

the prediction, 𝑦𝑖  is the actual value and �̂�𝑖  is the prediction value. You take the square because 

otherwise when we sum the values up the positive and negative values would cancel each other out. 

You do this because we want to minimize the error, or distance from the line to the true values. Which 

we do using the equation: 𝑄 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 . Now with that equation we can find the sum of the 

squared error. So, the next step is to find the least square estimate for 𝑏1 and 𝑏0. In order to do this we 

take derivates for 𝑏0 and 𝑏1 which produces the two equations: 𝑏0 = 𝑦 − 𝑏1𝑥, and b1 =

∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛
𝑖=1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

. This will give the coefficients that minimize the error between the predicted y and y 

actual. Plugging in the equation for �̂�𝑖   in  𝑄 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  you get 𝑄 = ∑ (𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖))
2𝑛

𝑖=1 .  

The mean of x is 69.3, and the mean of y is 158.8. 



 

After carrying out the math and graphing both the points and best fit line we have: 

i 𝑥𝑖 
Height 
inches 

𝑦𝑖  
Weight 
actual lbs 

�̂�𝑖  
Estimated 
Weight 
lbs 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 𝑒𝑖

= (𝑦𝑖 − �̂�𝑖)^2 
𝑏0 

∑(𝑥𝑖 − 𝑥)(𝑦𝑖

𝑛

𝑖=1

− 𝑦) 

∑(𝑥𝑖

𝑛

𝑖=1

− 𝑥)2 

1 63 127 120.13 6.8715 47.22 -259.668 

 
200.34 39.69 

2 64 121 126.27 -5.266 27.73 -271.805 

 
200.34 28.09 

3 66 142 138.54 3.459 11.97 -263.08 

 
55.44 10.89 

4 69 157 156.95 0.0465 0.002 -266.493 

 
0.54 0.09 

5 69 162 156.95 5.0465 25.47 -261.493 

 
-0.96 0.09 

6 71 156 169.23 -13.2285 174.99 -279.768 

 
-4.76 2.89 

7 71 169 169.23 -0.2285 0.052 -266.768 

 
17.34 2.89 

8 72 165 175.37 -10.366 107.45 -276.906 

 
16.74 7.29 

9 73 181 181.50 -0.5035 0.25 -267.043 

 
82.14 13.69 

10 75 208 193.78 14.2215 202.25 -252.319 

 
280.44 32.49 

    Sum approx. 
= 0 

Sum = 
597.34= 

error 

Sum =  
-266.534 

 

Sum = 
847.6 

Sum = 
138.1 

      𝑏0= 
-266.534 

 

𝑏1 =
847.6

138.1
= 6.1375 



 

With a best fit line of �̂�𝑖(𝑤𝑒𝑖𝑔ℎ𝑡) = −266.534 + 6.1375𝑥𝑖(ℎ𝑒𝑖𝑔ℎ𝑡). 

 With Linear Algebra 

That is but one way to find the best fit line. There are a few strategies that can be employed to 

find a best fit line and an answer to an otherwise unsolvable system of equations. Within linear algebra 

is one such equation the “normal equation” 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. If we look at the same problem using 

matrices.   If we put all of our points in matrices where Ax=b,  

A=

[
 
 
 
 
 
 
 
 
 
1 63
1 64
1 66
1 69
1 69
1 71
1 71
1 72
1 73
1 75]

 
 
 
 
 
 
 
 
 

         x=
𝑏0

𝑏1
            and            B =

[
 
 
 
 
 
 
 
 
 
127
121
142
157
162
156
169
165
181
208]

 
 
 
 
 
 
 
 
 

                

We already know this system is inconsistent so we cannot solve it traditionally.  This is where 

the normal equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 comes in.  

𝐴𝑇𝐴𝑥 produces the matrix 
10 693
693 48163

      𝐴𝑇𝑏 produces 
1588

110896
 

Then with 𝐴𝑇𝐴 being invertible we can solve for  𝑥 by taking (𝐴𝑇𝐴) −1. B which is:  

 

 [

48163

1381
−

693

1381

−
693

1381

10

1381

]  .   [
1588

110896
]    =    [

−
368084

1381
8476

1381

] 



Checking against the previous results 𝑏0= -266.534 and 𝑏1 = 6.1375 which is perfect. Now for why this 

works has to do with A having independent columns. Because A has independent columns then Ax = 0 

and the only solution is x = 0 so 𝐴𝑇𝐴 is invertible which makes it so we can solve 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 for the 

best solution using the inverse matrix of 𝐴𝑇𝐴. (Lay, 2012) 

 Multivariate Regression 

Regression is possible with 1 …. n variables and as you may suspect it looks something like equation 

 �̂�𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2 + ⋯+ 𝑏𝑛𝑥𝑛 

The techniques used previously apply here.  

One such example going back to the iris data from (Raschka, 2015) we can use a regression to 

estimate what a irises sepal length is given the petal length and width. Why do this? Because taking 

measurements is hard. So, like before we form up the matrix A (only a small portion of the matrix)=  

 

Applying the normal equation, we are left with 𝐴𝑇𝐴 = 

 

 

 

and 𝐴𝑇𝑏 =  

 



Solving with (𝐴𝑇𝐴) −1. 𝐴𝑇𝑏 gives the least squares solution  

 

And the equation for the sepal length from petal length and width is 

�̂�(𝑠𝐿) =4.18950102+ 0.54099383𝑥1(𝑃 𝑙𝑒𝑛)-0.31667117𝑥2(𝑃 𝑤𝑖𝑑) 

 

Now to see how well we did let’s look at some of the predicted values compared to the actual  
 

 
 
Compare to the actual Y of data reserved for testing the first  

 

With an R^2 value of 0.5748598957765443 which on the surface means it Is an alright fit.  

Conclusion 

Though I originally wanted to build a classification algorithm for the irises using linear regression 

and least squares I fell short. Linear regression can serve respectably well as a classification algorithm if 

the man assumptions are met. For one in the regression I did do petal length and width are quite 

correlated with each other which you do not want as seen by the correlation matrix 

  

When I was trying to construct the classification algorithm using linear regression to try and determine 

what variety of iris it was given a petal length and width, I ran into the problem of linear regression not 



being good for non-continuous variables. So as a whole my multivariate linear regression classification 

algorithm attempt was a series of lessons in how not to do things.  

Linear regression is much better suited to something like heights and weights, or changes over 

time. After you gotten your sample data and found your best fit line you can now predict what a 

person’s weight will be based on their height. If linear regression was only useful for something like 

finding someone’s predicted weight based on their height, or the sepal length of an iris it would not be 

all that exciting. Especially when you consider that in this case it will only model a certain subset of the 

population well. For example, let’s assume that height weight data was from adult males. If we tried 

predicting a female’s weight using our best fit line, we may be quite a bit off the mark. Even worse if we 

looked at a child let’s say 36 inches tall our best fit line would predict that the child weights -45.584 

pounds. Which is bad news for that kid. These are just a few of the pitfalls you can fall into using linear 

regression.  However, the techniques used to predict what someone’s weight will be based on their 

height can be used in all kinds of scenarios. Like predicting what a stock’s price may be in the future, 

how many purchases to expect in spring, a computer recognizing a face from a picture, predicting heart 

attack risk, and so on.  
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