
Fractals

Krzysztof Gdawiec

kgdawiec@ux2.math.us.edu.pl

1 Introduction

In the 1970’s Benoit Mandelbrot introduced to the world new field of mathematics. He
named this field fractal geometry (fractus – from Latin divided, fractional). Fractal ge-
ometry breaks the way we see everything. It provides a new idea of modeling natural
objects, such as clouds, plants, landscapes, galaxies. Fractals existed considerbaly earlier,
but they were perceived as exceptional objects, mathematical monsters. Many of the
early fractals came into being by effort of deep understanding of the basic mathematical
notions. We can mention many names among mathematicians connected with fractals
(e.g. George Cantor, Giuseppe Peano, David Hillbert, Helge von Koch, Waclaw Sier-
pinski). Their creatures such as Koch curve, Sierpinski gasket, Cantor set, Peano curve
are called classical fractals. Mandelbrot turned the official interpretation of these objects
upside down. He observed that what seemed to be an exception was a rule.

Currently the application of fractals is very wide. Their application can be found in
image compression, generating shore lines, mountains, clouds or in medicine and economy.

Now we will try to present two basic methods which allow to generate fractals. Also
we will present Julia sets and Mandelbrot set.

2 Iterated function system

In this section we will present one of methods to generate fractals – generating through
iterated function system. But first we introduce several fundamental definitions.

Definition 2.1. Let X be a nonempty set. We say that function ρ : X ×X → [0,+∞)
is a metric (distance) on space X when

1. ∀x,y∈X ρ(x, y) = 0 ⇐⇒ x = y

2. ∀x,y∈X ρ(x, y) = ρ(y, x)

3. ∀x,y,z∈X ρ(x, y) + ρ(y, z) ≥ ρ(x, z)

This nonempty set X with metric ρ is called metric space.

For example (R2, ρ), where ρ is Euclidean distance

∀(x1,y1),(x2,y2)∈R2 ρ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

is metric space.

1

Definition 2.2. We say that a metric space (X, ρ) is complete if every sequence (an)n∈N
satisfying following condition

∀ε>0∃N∈N∀n,m>N ρ(an, am) < ε

is convergent.

In our further considerations we will use complex subset space in R2 which we denote
as H(R2) and as metric we take the Haussdorf distance h : H(R2)×H(R2)→ [0,+∞)

h(R, S) = max{D(R, S), D(S,R)}

where D : H(R2)×H(R2)→ [0,+∞) is defined as follows

D(R, S) = max
x∈R

min
y∈S

ρ(x, y)

for every R, S ∈ H(R2) and any metric ρ on R2.

Theorem 2.3. (H(R2), h) is complete metric space.

Proof. See [1].

Definition 2.4. Let (X, ρ) be a metric space. We say that transformation f : X → X is
a contraction mapping if there exists 0 ≤ c < 1 such that

∀x,y∈X ρ(f(x), f(y)) ≤ cρ(x, y).

Let us consider a contraction mapping f : R2 → R2 and our space (H(R2), h). Then
the mapping f defines mapping on H(R2) as follows

∀A∈H(R2) f(A) = {f(a) : a ∈ A}.

Now we are ready to define iterated function system.

Definition 2.5. Let (X, ρ) be a complete metric space. We say that a set of contraction
mappings W = {f1, . . . , fn}, n ∈ N is an iterated function system (IFS).

If W = {f1, . . . , fn} is IFS, then W defines transformation on (H(R2), h) as follows

∀A∈H(R2) W (A) =
n⋃

i=1

fi(A).

Mapping W on the space (H(R2), h) also is contraction mapping.
Let A ∈ H(R2) and W be IFS. Consider following sequence{

W 0(A) = A
W n(A) = W (W n−1(A)), n ≥ 1

(1)

According to the Banach fixed-point Theorem sequence given by (1) will be convergent
to some B ∈ H(R2). Moreover B will be independent on any choice of A.

Definition 2.6. We say that a set B ∈ H(R2) being a limit of sequence given by (1) is
an attractor of mapping W .

2

Let us consider an affine mapping f : R2 → R2

f

([
x

y

])
=

[
a b
c d

] [
x

y

]
+

[
e
f

]
where a, b, c, d, e, f ∈ R. Using homogenous coordinates that mapping can be presented
in the matrix form

f ([x, y, 1]) = [x, y, 1]

 a c 0
b d 0
e f 1

 = [x, y, 1]F

where

F =

 a c 0
b d 0
e f 1


From now we will be using this affine mappings as a contraction mappings.

Let us consider following IFSs W1 = {f1, f2, f3} where

f1([x, y, 1]) = [x, y, 1]

 0.5 0 0
0 0.5 0

0.25 0 1


f2([x, y, 1]) = [x, y, 1]

 0.5 0 0
0 0.5 0
0 0.5 1


f3([x, y, 1]) = [x, y, 1]

 0.5 0 0
0 0.5 0

0.5 0.5 1


and W2 = {g1, g2, g3} where

g1([x, y, 1]) = [x, y, 1]

 −0.5 0 0
0 0.5 0

0.75 0 1


g2([x, y, 1]) = [x, y, 1]

 0.5 0 0
0 0.5 0
0 0.5 1


g3([x, y, 1]) = [x, y, 1]

 −0.5 0 0
0 0.5 0
1 0.5 1


Both of IFSs have the same attractor shown in fig.1. We can see that any B ∈ H(R2)
may be an attractor of different IFSs.

3 The chaos game

In this section we will present next method that allows us to generate fractals – the chaos
game.

3

Fig. 1: Sierpinski gasket

Algorithm 1 Generating fractal through IFS

Require: {f1, . . . , fk} – affine mappings, S – starting set (point, triangle), n – number
of iterations

Ensure: Approximation of an attractor of {f1, . . . , fk}

temp = A
for i = 1 to n
temp1 = ∅
for j = 1 to k
temp1 = temp1 ∪ fj(temp)

end for
temp = temp1

end for
Plot temp

First we will explain the rules of our game. We choose any three points of the plane
and mark them as 1, 2, 3. For the game we need a dice with numbers 1, 2, 3 drawn on
it. Finally we pick one more point of the plane (starting point). Now we throw the dice.
After throwing up a number n ∈ {1, 2, 3} we plot a point in a half of a distance between
the starting point and the point marked as n. That new point becomes initial point for
the next step, in which again we draw a number and plot new point in the half of the
distance between the initial point and the drawed one. And again the new point becomes
initial point for the next step. We repeat that procedure again and again. Fig.2 shows
us the result of our game for 500, 2000 and 10000 steps. We see that slowly Sierpinski’s
gasket appears.

Now we consider an IFS W = {f1, . . . , fn}, where fi is an affine mapping given by the
formula

fi([x, y, 1]) = [x, y, 1]Fi

for i = 1, . . . , n.
Now we try to create a new game. For every mapping fi we define a probability pi > 0

such that
∑n

i=1 pi = 1. Like in our previous game we pick any point of the plane. Now
we draw mapping fi with probability pi, where i ∈ {1, . . . , n} and we transform the point

4

Fig. 2: Chaos game for 500, 2000, 10000 steps

with this mapping. This new point is initial point for the next step which is exactly the
same as the first step. So we draw mapping and transform the point with this mapping.
The new point is inital point for the next step. And we repeat that procedure again and
again.

Now a question appears. How to choose the probabilities? We can take an uniform
probability distribution, but we can obtain the best result if we choose them as follows

pi =
| detFi|∑n

j=1 | detFj|

for i = 1, . . . , n.
Few words about the starting point. If the starting point does not belong to the

attractor, then finite number of points created at the beginning of the game will lie
outside the attractor. But if the starting point belongs to the attractor, then all new
created points will lie in the attractor.

Algorithm 2 Generating fractal through chaos game

Require: n – number of steps, {f1, . . . , fk} – affine mappings, {p1, . . . , pk} – probabilities
(probability distribution), [x, y] – starting point

Ensure: Approximation of an attractor of {f1, . . . , fk}

for i = 1 to n
draw number m ∈ {1, . . . , k} according to given probability distribution {p1, . . . , pk}

[x, y, 1] = fm([x, y, 1])
Plot [x, y]

end for

4 Julia sets, Mandelbrot set

The name ,,Julia set” comes from the surname of a French mathematician Gaston Julia
(1893-1978). His work about Julia sets appeared in 1918. The starting point of his work
was article from a Britsh mathematican Sir Arthur Cayley entitled ,,The Newton-Fourier
Imaginary Problem” (1879).

5

Let us consider following function f : C → C, f(z) = z2 + c, where c ∈ C is given
parameter. Now we will iterate function f{

f 0(z) = z
fn(z) = f(fn−1(z)), n ≥ 1

It turns out that for given z ∈ C we have two posibilities that happen in the iteration
process with z when n→∞. It escapes to infinity, or it remains in a bounded area.

The points that escapes in the iteration process for given parameter c ∈ C are said to
be in an escape set Ec

Ec = {z ∈ C : lim
n→∞

|fn(z)| = +∞}

And the points that remains in a bounded area in the iteration process for given parameter
c ∈ C are said to be in a prisoners set Pc

Pc = {z ∈ C : z 6∈ Ec}

Definition 4.1. Let c ∈ C. The boundary of the escape set Ec is called the Julia set Jc.

Now a question appears. How to mark the escape set Ec? The answer for that question
is given by following lemma.

Lemma 4.2. Let c ∈ C be a given parameter and z ∈ C be such that |z| ≥ |c| and |z| > 2.
Then z ∈ Ec.

Proof. See [5].

Let us define
r(c) = max(|c|, 2)

According to Lemma (4.2) if |fk(z)| > r(c) for some k = 0, 1, 2, . . . then we are sure that
z ∈ Ec. Now we define

Q(−k)
c = {z ∈ C : |fk(z)| ≤ r(c)}

for every k = 0, 1, 2,
This set defines next approximations of the escape set, so

lim
k→∞

Q(−k)
c = Pc

Using algorithm 3 we can visualize next approximations of the Julia sets.
Now we will concentrate on a Mandelbrot set. It was discovered in 1979 by French

mathematician Benoit Mandelbrot. He studied whether the Julia set Jc is connected or
disconnected set for given c ∈ C. Let us remind the definition of connected set.

Definition 4.3. We say that a metric space (X, ρ) is connected when there do not exist
nonempty, open sets U, V ⊂ X such that U ∩ V = ∅ and X = U ∪ V .

Definition 4.4. We say that a subset W of the metric space (X, ρ) is connected if a
metric space (W, ρ) is connected.

6

Algorithm 3

Require: c ∈ C – parameter in function f , z ∈ C – given point, k – the number of
approximation

Ensure: TRUE ⇐⇒ z ∈ Q(−k)
c , FALSE ⇐⇒ z ∈ Pc

R = max(|c|, 2)
i = 0
while i < k

if |z| > R
Return FALSE

end if
z = z2 + c
i = i+ 1

end while
Return TRUE

Fig. 3: The result of Mandelbrot’s experiment

The definition of a Mandelbrot set looks as follows

M = {c ∈ C : Jc – is connected set}

Mandelbrot in his experiment marked on the complex plane with the black color every
point c ∈ C if Julia set Jc was connected and if Jc was disconnected he marked that point
with the white color. The result of this experiment is shown in the fig.3.

Here is an alternative definition of the Mandelbrot set

M = {c ∈ C : lim
n→∞

fn
c (0) <∞}

where fc(z) = z2 + c.
Now a question appears. How to state whether Julia set Jc is connected or disconnected

for given c ∈ C? Like in the case of Julia sets we will define sets that will approximate
the Mandelbrot set and will be convergent to it. The definition of this sets is following

R(−m) = {c ∈ C : |fm
c (0)| ≤ 2}

7

for m = 0, 1, 2, . . . and
lim

m→∞
R(−m) = M

Algorithm 4

Require: c ∈ C – given parameter, m – the number of approximation
Ensure: TRUE ⇐⇒ c ∈ R(−m), FALSE ⇐⇒ Jc – disconnected set ⇐⇒ c 6∈M

k = 0
z = c
while k < m

if |z| > 2
Return FALSE

end if
z = z2 + c
k = k + 1

end while
Return TRUE

Using algorithm 4 we can visualize next approximations of the Mandelbrot set.

5 Program and examples

In this section we will present implementations of the four algorithms that we have pre-
sented in previous sections and also some images that we have achieved using these func-
tions.

5.1 Iterated function system

Listing 1: IFS.m
function p = IFS (trans , shape , n)
% IFS(trans , shape , n)
%
% func t i on re turns po in t s generated by IFS
%
% trans − l i s t o f a f f i n e t rans format ions
% shape − s t a r t i n g shape
% n − number o f i t e r a t i o n s
%
%
% example :
% n = 10;
% trans = { [0 .4194 0.3629 −0.0000; 0.0376 0.3306 0 .0000 ; 0 0 1 . 0 0 0 0] , . . .
% [0 .5645 −0.2903 0 ; 0.0699 0.1855 0 .0000 ; 0.8500 0.8250 1 . 0000]} ;
% shape = [0 0 1 ; 1 0 1 ; 0 .5 1 1] ;
% p = IFS(trans , shape , n) ;

temp = shape ;
[iw , i k] = s ize (temp) ;
t r = s ize (trans , 2) ;
l en = length (t rans) ;

8

temp1 = zeros (iw , i k ∗ l en ˆn) ;
w = 1 ;
for i = 1 : n

k = 1 ;
for j = 1 : t r

for m = 1 :w
temp1 (: , 1+(k−1)∗ i k : i k+(k−1)∗ i k) = temp (: ,1+(m−1)∗ i k : i k+(m−1)∗ i k) ∗ t rans { j } ;
k = k + 1 ;

end
end
w = w ∗ l en ;
temp = temp1 (: , 1 : i k ∗w) ;

end

p = temp ;

In our program we have included the possibility to read IFS from a file. The format of
the ifs-files is following: the first line contains a number n ∈ N of an affine mappings,
next n lines describe the affine mappings

a b c d e f p

where a, b, c, d, e, f ∈ R are the coefficients of the affine mapping and p > 0 is the proba-
bility of drawing this affine mapping. For example following file

3
0 .387 0 .43 0 .43 −0.387 0 .256 0 .522 0 .694
0 .441 −0.091 −0.009 −0.322 0 .4219 0 .5059 0 .2962
−0.468 0 .02 −0.113 0 .015 0 .4 0 .4 0 .0099

describes following IFS

f1([x, y, 1]) = [x, y, 1]

 0.387 0.43 0
0.43 −0.387 0
0.256 0.522 1

 p1 = 0.694

f2([x, y, 1]) = [x, y, 1]

 0.441 −0.009 0
−0.091 −0.322 0
0.4219 0.5059 1

 p2 = 0.2962

f3([x, y, 1]) = [x, y, 1]

 −0.468 −0.113 0
0.02 0.015 0
0.4 0.4 1

 p3 = 0.0099

5.2 The chaos game

Listing 2: chaos.m
function Points = chaos (trans , point , n)
% chaos (trans , point , n)
%
% func t i on re turns po in t s generated by the chaos game
%
% trans − l i s t o f a f f i n e t rans format ions

9

% poin t − s t a r t i n g po in t
% n − number o f i t e r a t i o n s
%
%
% example :
% po in t = [0 0 1] ;
% trans = { [0 .4194 0.3629 −0.0000; 0.0376 0.3306 0 .0000 ; 0 0 1 . 0 0 0 0] , . . .
% [0 .5645 −0.2903 0 ; 0.0699 0.1855 0 .0000 ; 0.8500 0.8250 1 . 0000]} ;
% n = 1000;
% p = chaos (trans , point , n) ;

%computing the p r o b a b i l i t i e s
d e t i = zeros (1 , length (t rans)) ;
pz = [] ;
det p = 0 ;
for i = 1 : length (t rans)

d = abs (det (t rans { i })) ;
d e t i (i) = d ;
det p = det p + d ;
i f d == 0

pz = [pz i] ;
end

end

i f det p == 0
det p = 1 ;
d e t i (:) = 1/ length (t rans) ;

end

pr = d e t i / det p ;

i f det p > 0 && ˜isempty (pz)
pp = 0 . 0 0 8 ;
pk = pp∗ length (pz)/ (length (t rans)−length (pz)) ;
for i = 1 : length (t rans)

i f ˜isempty (find (pz == i))
pr (i) = pp ;

else
pr (i) = pr (i) − pk ;

end
end

end

p{1} = pr (1) ;
for i = 2 : length (pr)

p{ i } = p{ i−1} + pr (i) ;
end

%s e t t i n g the s t a r t i n g po in t
pkt t = point ;
p o i n t s i z e = length (po int) ;
po in t s = zeros (p o i n t s i z e , n) ;

%chaos game
for i = 1 : n

r = rand (1) ;
for j = 1 : s ize (p , 2)

i f r < p{ j }

10

pkt t = pkt t ∗ t rans { j } ;
po in t s (: , i) = pkt t (:) ;
break ;

end
end

end

Points = po in t s ;

5.3 Julia sets, Mandelbrot set

Listing 3: Julia plot.m
function J u l i a p l o t (c , k , Xr , Yr)
% Ju l i a p l o t (c , k ,Xr ,Yr)
%
% func t i on p l o t s Ju l i a s e t f o r g i ven parameter c
%
% c − parameter in equat ion z = z ˆ2 + c
% k − number o f i t e r a t i o n s
% Xr − range o f va l u e s on the x ax is , Xr(1 ,1) − min value , Xr(1 ,2) − max
% va lue
% Yr − range o f va l u e s on the y ax is , Yr(1 ,1) − min value , Yr(1 ,2) − max
% va lue
%
%
% example :
% J u l i a p l o t (i ,100 ,[−2 2] ,[−2 2])

n = 400 ;
x = linspace (Xr (1 , 1) ,Xr (1 , 2) , n) ;
y = linspace (Yr (1 , 1) ,Yr (1 , 2) , n) ;
[X,Y] = meshgrid (x , y) ;

W = zeros (length (X) , length (Y)) ;
for m = 1 : s ize (X, 2)

for j = 1 : s ize (Y, 2)
[w, i t e r] = Ju l i a (X(m, j)+Y(m, j)∗ i , c , k) ;

W(m, j) = W(m, j) + i t e r ;
end

end
hold on ;
%ax i s o f f ;

colormap (jet) ;
pcolor (W) ;
shading i n t e rp ;

hold o f f ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

function [pr i , i t] = Ju l i a (z , c , k)

R = max(abs (c) , 2) ;
i = 0 ;
while i < k

i f abs (z) > R
pr i = 1 ;
i t = i ;

11

return ;
end

z = zˆ2 + c ;
i = i + 1 ;

end
p r i = 0 ;
i t = i ;

Listing 4: Mandelbrot plot.m
function Mandelbrot plot (k , Xr , Yr)
% Mande l b ro t p l o t (k ,Xr ,Yr)
%
% func t i on p l o t s the Mandelbrot s e t in g iven range
%
% k − number o f i t e r a t i o n s
% Xr − range o f va l u e s on the x ax is , Xr(1 ,1) − min value , Xr(1 ,2) − max
% va lue
% Yr − range o f va l u e s on the y ax is , Yr(1 ,1) − min value , Yr(1 ,2) − max
% va lue
%
%
% example :
% Mande l b ro t p l o t (100 ,[−2 2] ,[−2 2])

n = 400 ;
x = linspace (Xr (1 , 1) ,Xr (1 , 2) , n) ;
y = linspace (Yr (1 , 1) ,Yr (1 , 2) , n) ;
[X,Y] = meshgrid (x , y) ;

W = zeros (length (X) , length (Y)) ;
for m = 1 : s ize (X, 2)

for j = 1 : s ize (Y, 2)
[w, i t e r] = Mandelbrot (X(m, j)+Y(m, j)∗ i , k) ;

W(m, j) = W(m, j) + i t e r ;
end

end
hold on ;
%ax i s o f f ;

colormap (jet) ;
pcolor (W) ;
shading i n t e rp ;

hold o f f ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

function [pr i , i t] = Mandelbrot (c ,m)

k = 0 ;
z = c ;
while k < m

i f abs (z) > 2
p r i = 1 ;
i t = k ;
return ;

end

12

z = zˆ2 + c ;
k = k + 1 ;

end
p r i = 0 ;
i t = k ;

References

[1] M. Barnsley, Fractals Everywhere, Academic Press, Boston, (1993)

[2] Y. Fisher, Fractal image compression, SIGGRAPH ’92 Course Notes, vol. 12 pp. 7.1-
7.19, (1992)

[3] John C. Hart, Fractal Image Compression and Recurent Iterated Function Stystems,
IEEE Computer Graphics and Applications, vol. 16, no. 4, pp. 25-33, (1996)

[4] G. Neil, K. M. Curtis, Shape recognition using fractal geometry, Pattern Recognition,
vol. 30, No. 12, pp. 1957-1969, (1997)

[5] H.-O. Peitgen, H. Jurgens, D. Saupe, Fractals for the Classroom, Springer-Verlag 1992

13

Fig. 4: Koch curve – starts from point, iteration 4, 5, 6

14

Fig. 5: Koch curve – starts from triangle, iteration 3, 4, 6

15

Fig. 6: Sierpinski gasket – starts from point, iteration 5, 7, 9

16

Fig. 7: Sierpinski gasket – starts from rectangle, iteration 4, 6, 8

17

Fig. 8: Crystal – starts from point, iteration 5, 6, 7

18

Fig. 9: Crystal – starts from triangle, iteration 3, 4, 6

19

Fig. 10: Crystal – the chaos game, iteration 1000, 10000, 50000

20

Fig. 11: Barnsley fern – the chaos game, iteration 1000, 10000, 50000

21

Fig. 12: Julia set – c = −0.7− 0.3i, iterations 25, 50, 100

22

Fig. 13: Julia set – c = −0.86− 0.22i, iterations 25, 50, 100

23

Fig. 14: Julia set – c = i, iterations 25, 75

24

Fig. 15: Mandelbrot set – iterations 25, 100

25

Fig. 16: Parts of the Mandelbrot set – iterations 100

26

Fig. 17: Another part of the Mandelbrot set – iterations 100

27

	Introduction
	Iterated function system
	The chaos game
	Julia sets, Mandelbrot set
	Program and examples
	Iterated function system
	The chaos game
	Julia sets, Mandelbrot set

