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1. Preface 
 
Everyone has seen some type of a fractal. It may have been a picture, and there are many 
fractals in nature. Soon, people started to realize that some of the natural shapes can be 
expressed mathematically. After a few centuries, the first complex fractal was introduced. 
Such a discovery could not have been achieved without the means to visualize such a fractal. 
The greatest visual aid was, and still is, a computer. Even though it has very limited precision, 
several algorithms were devised to make it as accurate as possible. Even nowadays, it is a big 
task to compromise between accuracy and computation time. 
 
It may seem unlikely, but the main purpose of complex fractals is generating pictures. There 
are millions of fractal pictures in thousands of picture galleries all over the Internet. It has 
become an art lately. 
 
Some interesting extensions to complex fractals were invented to expand the already infinite 
varieties of fractals. Typically, these extensions are based on algebras that extend complex 
numbers to more dimensions preserving complex numbers as their subset. Such algebras are 
usually difficult to visualize since they are more than 3-dimensional. The task of a 
visualization tool is to choose a subset of a fractal set and calculate an approximation having 
limited complexity. The most popular are 3D subsets because 2D subsets are very similar to 
complex fractals. 
 
Our goal in this project is to develop algebras extending complex numbers and use them to 
generate various fractals similar to complex fractals in definition. 
 
An additional task is to devise a method to determine the complexity of a set and distinguish 
between a regular object and a fractal. Such a method involves calculating the fractal 
dimension. 
 
The work belongs to the framework of the research project “Applied Mathematics in 
Technical and Physical Sciences” of the Ministry of Education, Youth and Sport of the Czech 
Republic, Project Number 6840770010. 
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2. Algebras 

 

2.1. Complex Numbers 
 

2.1.1. Properties 

 

All complex numbers are of the form a ib+ , where a  and b  are real numbers, and i  
represents an imaginary number with 2 1i = − , that is, i  is the square root of 1− . If b  is 0 , 
then the complex number corresponds to the real number a . In some fields, especially in 
electrical engineering, these numbers are written as a jb+ . 
 
There are other ways to express these numbers. One of them is called mod-arg form which 
uses the complex modulus and argument. The third form uses Euler's formula 

cos sinix
e x i x= + : 
  
 (cos sin ) e ,iz a ib r i r ϕϕ ϕ= + = + =  (2.1) 
 
where r z=  and arg zϕ = . 

 
Real numbers are a subset of complex numbers if the imaginary part is zero. 
 
Since Gauss proved the Fundamental Theorem of Algebra [1], we know that every 
polynomial equation having complex coefficients and a degree 1≥  has at least one complex 
root. 
 
All complex numbers are usually denoted by � . Associative, commutative, and distributive 
laws of algebra can be applied to them. 
 
A complex number can be viewed as a point or a vector in a two-dimensional Cartesian 
coordinate system called the complex plane or Gauss plane. Therefore, we can use the xy-
plane to display complex numbers. Thus, we can imagine arithmetic operations and some of 
their properties. 
 
It is not possible to order complex numbers because they cannot be turned into an ordered 
field. This property disallows some operations such as , , ,< > ≤  or ≥ . 
 
2.1.2. Conjugate 
 
The conjugate of a complex number x a ib= +  is defined as: 
 
 * ,x a ib= −  (2.2) 
 
inverting the sign of the imaginary part. 
 
The complex conjugation is a very "transparent" operation. It commutes with all the 
arithmetic operations: sum, difference, product, or quotient in the sum… Such an operation is 
called a field isomorphism. 
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2.1.3. Addition and Subtraction 

 
To add or subtract two complex numbers, add or subtract the corresponding real and 
imaginary parts. 
 
Addition can be interpreted as a transformation of the plane � . Every point is moved in the 
same direction and distance. We can say that addition gives a translation of the plane � . 
 
The negation of a ib+  is a ib− − , so the negation of a complex number will be located just 
opposite 0 and in the same distance from 0. Negation can be interpreted as a transformation of 
the plane � , too. A rotation by 180° around 0 gives the negation of the entire set � . 
 
2.1.4. Absolute Value 

 

The absolute value x  of a real number x  is the number itself if it is positive or zero, but if x  

is negative, then its absolute value x  is its negation x− , that is, the corresponding positive 

value. For a complex number z a ib= + , we define the absolute value z  as being the distance 

from z  to 0 in the plane � : 
 

 2 2 .z a b= +  (2.3) 

 
Note that this operation maps �  into �  (real numbers), so it can be used as a replacement for 
some comparison operations. 
 
2.1.5. Multiplication 

 

Let us take 2 complex numbers a ib+  and c id+ , multiply them, and extract the real and 
imaginary parts, which will give the result: 
 
 ( )( ) ( ) ( ).a ib c id ac bd i bc ad+ + = − + +  (2.4) 
 
To multiply a complex number by a real number, set d  to 0: 
 
 ( ) .a ib c ca icb+ = +  (2.5) 
 
Let us consider multiplying of an arbitrary complex number z a ib= +  by i : 
 
 ( ) .a ib i b ia+ = − +  (2.6) 
 
If we interpreted this statement geometrically, we would discover that the multiplication by i  
gives a 90° counterclockwise rotation around 0. 
 
The absolute value of x  times y  is the absolute value of x  times the absolute value of y . In 
fact, this is true in general: 
 
 .xy x y=  (2.7) 
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In order to prove this, we shall prove that it is true for the squares, so we do not have to deal 

with square roots. We will show that 
2 2 2

xy x y= . Let x  be a ib+ , and let y  be c id+ . 

According to the formula for multiplication, xy  equals ( ) ( )ac bd i bc ad− + + , therefore: 
 

 
2 2 2( ) ( ) .xy ac bd i bc ad= − + +  (2.8) 

 

In order to show that 
2 2 2

xy x y= , all we have to do is show that: 

 
 2 2 2 2 2 2( ) ( ) ( )( ).ac bd bc ad a b c d− + + = + +  (2.9) 
 
We have seen two special cases of multiplication: one by a real number which leads to 
scaling, the other by i  which leads to rotation. The general case is a combination of scaling 
and rotation. 
 
Let x  and y  be points in the complex plane � . The lengths of lines from 0 to x  and 0 to y  

are the absolute values x  and y . We already know the length of the line from 0 to xy  is 

going to be the absolute value xy  which equals x y . What we do not know is the direction 

of the line from 0 to xy . The answer is that "angles add". We will determine the direction of 
the line from 0 to x  by a certain angle called the argument of x , usually denoted arg x . This 
is the angle between the positive real axis and the line from 0 to x . The other point y  has the 
angle arg y . Then the product xy  will have an angle which is the sum of the angles 
arg argx y+ . 
 

Function arg x  can be calculated using the expression 
b

arctg
a

, but it is important to correctly 

determine the quadrant of the vector ( , )a b , because, for example, 
b b

a a

−
=

−
. 

 
2.1.6. Powers of  i 

 

Another special case of multiplication is calculating various powers of the imaginary unit i . 
We started with the assumption that 2 1i = − . After a brief investigation, we can conclude that 
the following sequence is repeating: 
 

 

4

4 1

4 2

4 3

1

1

,

n

n

n

n

i

i i

i

i i

+

+

+

=

=

= −

= −

 (2.10) 

 
where n  is an integer. 
 
The sequence also gives the reciprocal 1

i
−  of i , which is i− . This means that it is a number 

whose reciprocal is its own negation. It is easy to check that i  times i−  is 1, so i  and i−  are 
reciprocals. 



 5 

 
2.1.7. Reciprocal Value 
 
Our goal is to find 1

x
−  given a complex number x . In other words, given a complex number 

x a ib= + , find another complex number y c id= +  such that 1xy = . We will use the product 
formula we developed in the section on multiplication: 
 
 ( )( ) ( ) ( ).a ib c id ac bd i bc ad+ + = − + +  (2.11) 
 
If two complex numbers are equal, their real parts are equal and their imaginary parts as well. 
Because we need 1xy = , we can write: 
  
 ( ) ( ) 1.ac bd i bc ad− + + =  (2.12) 
 
This gives two equations: 
 

 
1

0.

ac bd

bc ad

− =

+ =
 (2.13) 

 
In our case, x  was given and y  was unknown, so in these two equations a  and b  are given, 
and c  and d  are the unknowns to be solved. Since the above is a simple system of linear 
equations, we can conclude that: 
 

 
2 2

2 2
.

a
c

a b

b
d

a b

=
+

−
=

+

 (2.14) 

 

Note that 
22 2

a b x+ = . 

 
This gives the reciprocal of x , which is y c id= + . 
 
Complex conjugates can be used to interpret reciprocals. We can easily check that a complex 

number x a ib= +  multiplied by its conjugate a ib−  is the square of its absolute value 
2

x . 

 

Therefore, 
1

x
 is the conjugate of x  divided by the square of its absolute value 

2
x : 

 

 
* *

2 *

1
.

x x

x x xx
= =  (2.15) 

 
However, the simplest way to calculate the reciprocal is to use the dot product: 
 

 
* *

2 2

1
.

x x

x x x a b
= =

+
 (2.16) 
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2.1.8. Division 

 
Just as subtraction can be compounded from addition and negation, division can be 

compounded from multiplication and reciprocation. Being given x , we want to find 
1

x
. 

 
We can safely say that division exists for all complex numbers except for dividing by 0, 

because 1 1 z
zx x z

x

− −= = , that is, the commutative law applies. 

 
2.1.9. Logarithm 
 
The logarithm of a complex number x  is defined as every complex number y  which satisfies 

the equation: y
e x= . 

 
This is denoted by ln :x y= . 
 
The solution is obtained by using the form y i

e re
ϕ= , where r x= , and arg xϕ = , so the 

result is: 
 
 argln ln ln ln arg .i x

y x x e x i x= = + = +  (2.17) 

 
The complex logarithm is defined for all 0x ≠ , and is multi-valued. 
 
2.1.10. Exponential Function 
 
Let x a ib= +  and y c id= +  be from � . 
 
The exponential function retains the important properties: 
 

 0 1

0.

x y x y

x

e e e

e

e

+ =

=

≠

 (2.18) 

 
We can write: a ib a ib

e e e
+ = . 

 
The expression a

e  is the exponential function for real numbers, and, to calculate ib
e , we can 

use the above mentioned Euler's formula. First, let us prove the formula using section 2.1.6. 
and the Taylor series expansions of the real functions x

e , cos x , and sin x . Instead of using 
real arguments, we will use iz , where z  is a real number. This is possible, because the radius 
of convergence of all three series is infinite. 
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2 3 4

2 3 4 5 6 7 8

2 4 6 8 3 5 7

( ) ( ) ( )
1 ...

2! 3! 4!

1 ...
2! 3! 4! 5! 6! 7! 8!

(1 ...) ( ...)
2! 4! 6! 8! 3! 5! 7!

cos sin .

iz iz iz iz
e iz

z z z z z z z
iz i i i

z z z z z z z
i z

z i z

= + + + + + =

= + − − + + − − + + =

= − + − + − + − + − + =

= +

 (2.19) 

 
The rearrangement of terms is possible, because the series are absolutely convergent. 
 
We have proved that cos sinib

e b i b= + , therefore: 
 
 (cos sin ),x ae e b i b= +  (2.20) 
 
where all functions are real. 
 
De Moivre's formula can also be used: 
 
 (cos sin ) cos sin ,nz i z nz i nz+ = +  (2.21) 
 
for z  from � , and n  from � . 
 
The same formula can be used with z  and n  from � . In this case, (cos sin )nz i z+  is a multi-
valued function while cos sinnz i nz+  is not, and one can state that the latter is a value of the 
first. 
 
We often desire a more generalized form of the function with a variable base. This can be 
achieved simply, thanks to the fact that ln x  is the inverse function to x

e : 
 
 ln ,y y xx e=  (2.22) 
 
where all numbers are complex. 
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2.2. Quaternions 
 
2.2.1. Properties 
 
Quaternions are members of a non-commutative division algebra. A division algebra is a ring, 
in which every nonzero element has a multiplicative inverse. 
 
They are an extension of complex numbers first invented by Sir William Rowan Hamilton in 
1843 [2]. Even though their main disadvantage is that they do not obey the commutative law, 
they are used in particular for intuitive three-dimensional rotations. 
 
The quaternions form a 4-dimensional division algebra over the real numbers, which is also a 
normed vector space often denoted by H (for Hamilton). 
 
The numbers are obtained by adding the elements i , j , and k  to the real numbers, which 
satisfy the following relations: 
 
 2 2 2 1.i j k ijk= = = = −  (2.23) 
 
The multiplication is assumed to be associative, therefore we can immediately write: 
 

 

,

,

, .

ij k ji k

jk i kj i

ki j ik j

= = −

= = −

= = −

 (2.24) 

 
To get the first equation, we use the definition 1ijk = −  right-multiplied on both sides by k : 
 

 ( 1)

.

ijkk k

ij k

ij k

= −

− = −

=

 (2.25) 

 
By left-multiplying and right-multiplying on both sides by i , j , or k , we get the remaining 
equations. 
 
The equations prove that the quaternions are not commutative, for example, ij k ji k= ≠ = − . 
This has some unexpected consequences, for instance, polynomial equations can have more 
distinct solutions than the degree of the polynomial. The equation 2 1 0z + =  has infinitely 
many solutions z bi cj dk= + +  with 2 2 2 1b c d+ + = . 
 
Every quaternion is a real linear combination of the basis quaternions 1, i , j , and k : 
 
 .a bi cj dk+ + +  (2.26) 
 
The scalar part of the quaternion is a while the remainder is the vector part. 
 
In the following sections, quaternions defined as: 
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,

p a u a bi cj dk

q t v t xi yj zk

= + = + + +

= + = + + +

�

�  (2.27) 

 
where u

�
 represents the vector ( , , )b c d , and v

�
 represents the vector ( , , )x y z , will be used. 

 
For instance, a rotation around the unit vector n

�
 by an angle θ  can be computed using the 

quaternion 
1 1

( , ) (cos , sin )
2 2

p a u nθ θ= =
� �

. 

 
2.2.2. Conjugate 
 
The conjugate *p  of the quaternion p  is defined as: 
 
 * .p a bi cj dk= − − −  (2.28) 
 
Note that * * *( )pq q p= , which is not generally equal to * *p q . 
 
2.2.3. Addition and Subtraction 
 
The addition of two quaternions p  and q  is equivalent to summing each of the elements 
together: 
 
 ( ) ( ) ( ) ( ) .p q a t b x i c y j d z k+ = + + + + + + +  (2.29) 
 
Subtraction is computed by negating all the elements of q  and using addition. 
 
Addition follows the commutativity and associativity rules of real and complex number. 
 
2.2.4. Absolute Value 
 
The absolute value of p  is the non-negative real number defined by: 
 

 * 2 2 2 2 .p p p p p a b c d= = ⋅ = + + +  (2.30) 

 
We can also write pq p q=  for all quaternions p  and q . The proof is similar to the one 

for complex numbers. 
 
If we define the distance function (metric) ( , )d p q p q= − , the quaternions form a metric 

space. 
 
2.2.5. Multiplication 
 
The non-commutative multiplication between two quaternions p  and q  is sometimes called 
the Grassmann product. The complete form is described here: 
 
 pq at u v av tu u v= − ⋅ + + + ×

� � � � � �
 (2.31) 
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or 
 
 ( ) ( ) ( ) ( ) .pq at bx cy dz bt ax cz dy i ct ay dx bz j dt az by cx k= − − − + + + − + + + − + + + − (2.32) 
 
Notice the difference between pq  and qp : 
 
 .qp at u v av tu u v= − ⋅ + + − ×

� � � � � �
 (2.33) 

 
The product of a quaternion and its conjugate is a scalar. 
 
2.2.6. Dot-product 
 
The dot-product is equivalent to a 4-vector dot product. The dot-product is the sum of each 
element of p  multiplied by each element of q . It is a commutative product between 
quaternions, and returns a scalar value: 
 
 .p q at u v at bx cy dz⋅ = + ⋅ = + + +

� �
 (2.34) 

 
The dot-product can be rewritten using multiplication: 
 

 .
2

pq qp
p q

+
⋅ =  (2.35) 

 
It is also useful to isolate an element from a quaternion. For example, the k  term can be 
isolated from p : .p k d⋅ =  
 
2.2.7. Reciprocal Value 
 
The inverse of a quaternion is defined so that the equation 1 1p p− =  is satisfied. It is derived 
in the same way that the complex inverse is found: 
 

 
*

1
*

.
p

p
p p

− =  (2.36) 

 
The division of a quaternion by a scalar is equivalent to multiplication by the scalar inverse, 
such that each element of the quaternion is divided by the divisor. 
 

Note that division in the form 
p

q
 is not defined for quaternions, because 1 1.p q qp− −≠  

 
2.2.8. Sign 
 
The sign of a complex number returns the complex number of the same direction found on the 
unit circle. The quaternion sign also produces the unit quaternion: 
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 sgn .
p

p
p

=  (2.37) 

 
2.2.9. Argument 
 
The argument finds the angle between the 4-dimensional quaternion vector and the unit scalar 
1 0 0 0i j k+ + + . It returns the scalar angle: 
 

 arg arccos .
a

p
p

=  (2.38) 

 
2.2.10. Logarithmic and Exponential Function 
 
Exponential and logarithmic functions can be defined because quaternions have a division 
algebra. 
 

 
ln

ln ln sgn arg

(cos sgn sin )

.

p a

q q p

p p u p

e e u u u

p e

= +

= +

=

�

� � �
 (2.39) 

 
These equations can be derived similarly like for the complex numbers. 
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2.3. Hypercomplex Numbers 
 
There are multiple distinct definitions of hypercomplex numbers, which leads to a certain 
confusion. Higher dimensional numbers in the Clifford Algebra are often called 
hypercomplex even though they do not have all the properties of complex numbers and no 
classical function theory can be constructed over them. 
 
A more general definition says that a hypercomplex number is a number having properties 
departing from those of the real and complex numbers [3]. The most common examples are 4-
dimensional tessarines, coquaternions, and above mentioned quaternions, 8-dimensional 
biquaternions and octonions, and 16-dimensional sedenions. 
 
There is another definition of “the” hypercomplex numbers brought to us by Clyde Davenport 
[4]. These 4-dimensional numbers will be described in more detail in the following 
paragraphs, referred to as the hypercomplex numbers. 
 
Unlike quaternions, the hypercomplex numbers satisfy the commutative law of multiplication. 
The law which does not apply is the field property that states that all non-zero elements of a 
field have a multiplicative inverse, so it is not a division algebra. For a non-zero 
hypercomplex number p , the multiplicative inverse 1p−  does not always exist. 
 
We will define multiplication using the basis vectors 1, i , j , and k  as with quaternions, and 
the following applies: 
 

 

1

1.

ij ji k

jk kj i

ki ik j

ii jj kk

ijk

= =

= = −

= = −

= = − = −

=

 (2.40) 

 
Note that now ij k=  and ji k= , and similarly for other products of pairs of basis vectors, so 
the commutative law holds. 
 
Providing that p a bi cj dk= + + +  and q t xi yj zk= + + +  are two hypercomplex numbers, the 
following functions and properties can be defined. 
 
2.3.1. Addition and Subtraction 
 
The addition of two hypercomplex numbers p  and q  is equivalent to the definition for 
quaternions: 
 
 ( ) ( ) ( ) ( ) .p q a t b x i c y j d z k+ = + + + + + + +  (2.41) 
 
Subtraction is computed by negating all the elements of q  and using addition. 
 
Commutativity and associativity are preserved. 
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2.3.2. Absolute Value 
 
The absolute value of p  is the non-negative real number defined by: 
 

 2 2 2 2 ,p a b c d= + + +  (2.42) 

 
because the hypercomplex numbers can be represented as a 4-dimensional Euclidean space. 
 
2.3.3. Multiplication 
 
By multiplying p  by q , we get the following commutative expression: 
 
 ( ) ( ) ( ) ( ) .pq at bx cy dz bt ax dy cz i ct dx ay bz j dt cx by az k= − − + + + − − + − + − + + + + (2.43) 
 
2.3.4. Reciprocal Value 

 
To compute reciprocal, the matrix representation of a hypercomplex number is necessary. The 
matrix representation can be created, for instance, by trial and error: 
 

 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

.

p a b c d

a b c d

b a d c

c d a b

d c b a

− −       
       

− −       = + + + =
       − −
       
       

− − 
 

− − =
 − −
 
 

(2.44) 

 
The matrix on the right side has the usual matrix inverse. It is remarkable that the matrix 
inverse of the typical matrix element is another matrix having the same pattern of entries: 
 

 

1

1

a b c d

b a d c
p

c d a b

d c b a

−

−

− − 
 

− − =
 − −
 
 

 (2.45) 

 

 

1 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 ( ) 2 ( ) det

( ) 2 ( ) det

( ) 2 ( ) det

( ) 2 ( ) det

p a a b c d d ad bc p

i b a b c d c ad bc p

j c a b c d b ad bc p

k d a b c d a ad bc p

−  = + + + − − 

 + − + + + − − 

 + − + + + − − 

 + + + + − − 

 (2.46) 
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The reader may verify that if one multiplies p  by 1p− , or vice-versa, one obtains a unity 
result. 
 
It fails to be a field only because the denominator in the vector form inverse is the determinant 
of the 4-D element in matrix form: 
 

 2 2 2 2det ( ) ( ) ( ) ( )p a d b c a d b c   = − + + + + −     (2.47) 

 
which is zero under the conditions ( ) ( )a d b c a d b c= ∧ = − ∨ = − ∧ = , therefore the ring is not 
defined under these conditions. 
 
2.3.5. Generalization 
 
The hypercomplex numbers have a generalization of any unary complex valued function 
defined on the complex numbers. Note that a hypercomplex number p  can be represented as 
a pair of complex numbers in the following way: 
 

 
( ) ( )

( ) ( ).

r a d i b c

s a d i b c

= − + +

= + + −
 (2.48) 

 
The numbers r  and s  are complex numbers. 
 
Conversely, if we have a hypercomplex number in the form ( , )r s , we can solve a , b , c , and 
d . The solution is: 
 

 

Re Re

2 2
Im Im

2
Im Im

2
Re Re

.
2

r s a d a d
a a

r s
b

r s
c

s r
d

+ − + +
= = =

+
=

−
=

−
=

 (2.49) 

 
We can now, for example, compute p

e . First, the two complex numbers r  and s  are 
computed as above, then r

r e=  and s
s e=  is calculated, where x

e  is the complex version of 
the exponential function. The equations above are used to solve a , b , c , and d . The 
hypercomplex number thus obtained is pp e= . 
 
These equations can be clarified by introducing yet another representation of the algebra: 
  

 
[ ] [ ]( ) ( ) (1 ) ( ) ( ) (1 )

.
2

a d i b c k a d i b c k
p

− + + − + + + − +
=  (2.50) 

 

Let us substitute 
1 1

( ) ( ), ( ) ( ), ,  and .
2 2

k k
r a d i b c s a d i b c ε η

− +
= − + + = + + − = =  
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So p r sε η= + , where  and r s  are obviously complex variables, and for a positive integer n : 
 

 
(0,0,0,0)

0 (vector dot-product)

1

.

n

n

k

ε ε

η η

εη

ε η

ε η

ε η

=

=

=

⋅ =

+ =

− + =

 (2.51) 

 
Consequently, the algebra operations can be written as: 
 

 

1 2 1 2

1 2 1 2

1 2 1 2

1 1 1

( ) ( )

( ) ( )

( ) ( )

.

p q r r s s

p q r r s s

pq r r s s

p r s

ε η

ε η

ε η

ε η− − −

+ = + + +

− = − + −

= +

= +

 (2.52) 

 
Because of the way that 4D analytic functions are defined, they have the same properties as 
for the corresponding complex-valued functions and we can use the same notation as for the 
complex variables. We have extended the complex analysis to treat a 4D variable. This result 
is not possible with non-commutative quaternions. 
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3. Fractals 
 
The word "fractal" has two related meanings. It denotes a shape that is recursively constructed 
or self-similar, that is, a shape that appears similar at all scales of magnification and is 
therefore often referred to as "infinitely complex“. In mathematics a fractal is a geometric 
object or quantity that satisfies a specific condition, namely having a Hausdorff dimension 
greater than its topological dimension. A plot of the quantity on a log-log graph versus the 
scale then gives a straight line whose slope is the Hausdorff dimension. An example of a 
fractal is the length of a coastline measured with different length rulers. The shorter the ruler, 
the longer the length measured, a paradox known as the coastline paradox. The term fractal 
was coined by Benoît Mandelbrot [5], from the Latin word fractus, meaning "broken" or 
"fractured". 
 
Objects that are now called fractals were discovered and explored long before the word was 
coined. 

 
The idea of "recursive self similarity" was 
originally developed by the philosopher Leibniz 
and he even worked out many of the details. In 
1872, Karl Weierstrass [6] found an example of 
a function with the non-intuitive property that it 
is everywhere continuous but nowhere 
differentiable - the graph of this function would 
now be called a fractal: 
 

 
1

( ) : lim cos ,
n

k k

n
k

f x a b xπ
→+∞

=

= ∑  (3.1) 

 
where a  is a real numbers in the interval (0,1) , and b  is an integer such that 

3
1 5.712...

2
ab π> + ∼ , for instance, Figure 3.1 shows a graph for 

1
, 12

2
a b= = , and n  

limited to 20. 
 
In 1904, Helge von Koch [7], dissatisfied with Weierstrass's very abstract and analytic 
definition, gave a more geometric definition of a similar function, which is now called the 
Koch snowflake (Figure 3.2). The idea of self-similar curves was taken further by Paul Pierre 
Lévy, who described a new fractal curve, the Lévy C curve (Figure 3.3). 
 
 

 
 
 

Figure 3.1 

Figure 3.2: Koch snowflake 
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Georg Cantor gave examples of subsets of the real line with unusual properties - these Cantor 
sets are now also recognised as fractals. 
 
Iterated functions in the complex plane had been investigated in the late 19th and early 20th 
centuries by Henri Poincaré, Felix Klein, Pierre Fatou, and Gaston Julia [7]. However, they 
lacked the means to visualize the beauty of many of the objects that can now be displayed 
with the aid of modern computer graphics. 
 
In the 1960s, Benoît Mandelbrot started investigating self-similarity in papers such as “How 
Long Is the Coast of Britain?“. In 1975, he coined the word fractal to denote an object whose 
Hausdorff-Besicovitch dimension is greater than its topological dimension. He illustrated this 
mathematical definition using computer visualizations. 
 
Additional examples of fractals include the Lyapunov fractal simulating population growth, 
Sierpiński triangle (Section 3.4.2) and carpet, Menger sponge, space-filling curve (Figure 
3.4), dragon curve (Figure 3.5), or the Koch curve (Section 3.3.1). 
 
Fractals can be deterministic or stochastic, that is, non-deterministic. 
 
 
 
 

 
 

Figure 3.3: Lévy C curve 

Figure 3.4: Space-filling Curve (Peano Curve) 
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3.1. Techniques for Generating 
 
Three common techniques for generating fractals are: 

• Iterated function systems - These fractals have a fixed geometric replacement rule. 
Cantor set, Sierpiński carpet, Sierpiński gasket, Peano curve (Figure 3.4), Koch 
snowflake (Figure 3.2), Harter-Heighway dragon curve (Figure 3.5), T-Square (Figure 
3.6), and Menger sponge are some examples of such fractals. 

• Escape-time fractals – Fractals that are defined by a recurrence relation at each point 
in a space such as the complex plane. Examples of this type are the Mandelbrot set, 
Julia sets (Section 3.4.1), and the Lyapunov fractal. 

• Random fractals – Fractals that are generated by stochastic rather than deterministic 
processes, for example, fractal landscapes (Perlin Noise), Lévy flight and the 
Brownian tree. 

 
 
 

  

Figure 3.5: Dragon Curve 

Figure 3.6: T-Square 
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3.2. Self-similarity 
 
Fractals can also be classified according to their self-similarity. There are three types of self-
similarity: 

• Exact self-similarity - This is the strongest type of self-similarity; the fractal appears 
identical at different scales. Fractals defined by iterated function systems often display 
exact self-similarity. 

• Quasi-self-similarity - This is a loose form of self-similarity. The fractal appears 
approximately (but not exactly) identical at different scales. Quasi-self-similar fractals 
contain small copies of the entire fractal in distorted and degenerated forms. Fractals 
defined by recurrence relations are usually quasi-self-similar but not exactly self-
similar. 

• Statistical self-similarity - This is the weakest type of self-similarity. The fractal has 
numerical or statistical measures which are preserved across scales. Many definitions 
of "fractal" imply some form of statistical self-similarity. The fractal dimension itself 
is a numerical measure which is preserved across scales. Random fractals are 
examples of fractals which are statistically self-similar, but neither exactly nor quasi-
self-similar. 

 
It should be noted that not all self-similar objects are fractals, for example, the real line (a 
straight Euclidean line) is exactly self-similar, but since its Hausdorff dimension and 
topological dimension are both equal to one, it is not a fractal. 
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3.3. Iterated Function Systems (IFS) 
 

Iterated Function Systems are a finite set of contraction maps 
i

w  for 1, 2,...,i n= , each with a 

contractivity factor 1
i

r < , which map a compact metric space onto itself. It is the basis for 

fractal image compression and interpolation techniques. 
 
An IFS fractal is a solution to a recursive set equation. The fractal is made up of the union of 
several copies of itself, each copy being transformed by a function (hence "function system"). 
The functions are normally contractive, which means they bring points closer together and 
make shapes smaller. The shape of an IFS fractal is made up of several possibly-overlapping 
smaller copies of itself, each of which is also made up of copies of itself. This is the source of 
its self-similar fractal nature [8]. 
 
The most common algorithm to compute IFS fractals is called the chaos game. It consists of 
choosing a random point in the plane, then iteratively applying one of the functions chosen 
randomly from the function system and drawing the point. An alternative algorithm is to 
generate each possible sequence of functions up to a given maximum length, and then to plot 
the results of applying each of these sequences of functions to an initial point or shape. 
 
3.3.1. Koch Curve 

 
A unit line is the initial state before iterating. The first step involves removing the middle one-
third of the unit line and replacing it by two line segments, each one-third long, creating a 
bottomless triangle in the middle. The object now contains four equal line segments. This is 
the first iteration. In the next iteration, each of the four lines is replaced by another four lines 
using the same replacement rule, and so on. The procedure is repeated endlessly to generate 
the Koch curve, a classical example of an IFS fractal. 
 

 

 

Figure 3.6: Koch Curve 
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3.4. Escape-time Fractals 
 
As stated above, these fractals are defined by a recurrence relation, which is a system of non-
linear processes in n-dimentional spaces. The processes predict the next (n+1) values in terms 
of the present (n) values. Then, the new values are applied to the equation. 
 
The shape of the fractal is determined by the constant coefficients and the initial values. 
 
If we iterate these processes (equations), it does not take long for the solution to display one 
of four behaviors: 

• it converges to a single fixed point 
• it produces a periodic cycle of repeating values 
• it diverges to infinity 
• it exhibits chaos. 

 
The fixed point that the system approaches is called the attractor. As the function is iterated, 
the sequence of sets created converges to the attractor. Usually, there is an area around the 
point called the finite basin of attraction, which bounds the solutions. In other words, within 
the basin of attraction, there is a range of initial values that will eventually produce the same 
pattern. Points outside of the basin are not bounded by it, and tend to move ever further from 
the attractor. Because they escape the vicinity of the attractor, fractals that have this particular 
characteristic are called escape-time fractals. Repellers are points outside of the basin to 
which points may slowly escape. Strange attractors differ from regular attractors in that it is 
impossible to tell where they will be. Two points on the same attractor can be very close to 
one another at one point in time, and at another far apart. Thus, strange attractors behave 
chaotically. 
 
The following fractals in this section can be defined for complex numbers, quaternions, and 
the hypercomplex numbers. It is possible to define them for even higher-dimensional spaces, 
but the benefit is minimal, considering that we cannot efficiently visualize nor imagine more 
that 3-dimensional objects. 
 
Since the hypercomplex numbers and quaternions are merely extensions to complex numbers, 
the relations defined for these 4-dimensional spaces can also be used to generate complex 
fractals, using only 1 and i  basis vectors, and zeroing j  and k . 
 
3.4.1. Mandelbrot and Julia Sets 
 
This is undoubtedly the best known family of fractals which is defined extremely simply by 
the relation: 
 
 2

1 ,
n n

z z c+ = +  (3.2) 

 
where c  is a constant. 
 
The behavior of the sequence depends upon the following data: the parameter c  and the 
initial point 0z . Julia sets are defined by fixing c  and letting 0z  vary in the field of complex 

numbers, while the Mandelbrot set is obtained by fixing 0 0z =  and varying the parameter c . 



 22 

If 0z  is taken far from 0, then the sequence tends very quickly towards infinity. There are 

values of 0z  for which the sequence remains bounded. For a given c , these values form the 

Julia set of the polynomial 2:z z c= + . The corresponding Julia set consists only of the 
boundary point of the “filled-in” set [12]. 
 
Obviously, the Julia set depends on the choice of the parameter c , but the surprise is that it 
depends heavily on it, so by varying c , an incredible variety of Julia sets can be obtained. 
Some look like a cloud, others like sparks, or a rabbit, and many have sea-horse tails… 
 
Although the Mandelbrot set is just a single set, resembling a cardioid in the complex plane, 
there are two major classes of Julia sets. Some are in one piece – we say they are connected, 
while the others are just a cloud of points, which we call a Cantor set. 
 
We can define a new set of values of c  for which the Julia set is connected. This set is called 
the Mandelbrot set, since Benoît Mandelbrot was the first to produce pictures of it, using a 
computer. As mentioned above, the set can also be defined as the set of values of c  for which, 
starting with 0 0z = , the sequence 

n
z  remains bounded. The equivalence of these two 

definitions was proved in 1919, independently, by Fatou and Julia. 
 
The relationship between the Mandelbrot and Julia sets is the underlying principle for many 
other fractals. 
 
The most frequent extension to the provided formula is replacing the exponent 2 with an 
arbitrary integer exponent, or even using a real, complex, or hypercomplex exponent. We 
have shown that the exponential function is defined in all of these cases. The resulting relation 
is: 
 
 1 ,p

n n
z z c+ = +  (3.3) 

 
where p  is a real, complex, or hypercomplex number. The relation behaves identically to the 
original relation for 2 0 0 0p i j k= + + + . 
 
This extension of the complex Mandelbrot set is characteristic of generating multiple fractal-
shaped circles that are connected in 0. The circles are surrounded by areas called buds. For 
positive integer values of p , there are exactly 1p −  circles. We can say that the same formula 
applies to a positive real exponent because it really looks like there are 4 and a half of circles 
for 5.5p =  (Figure 3.8). Setting other basis vectors i , j , and k  to a non-zero value leads to 
other less predictable effects. 
 
A similar behavior can be observed in the extended Julia sets. For connected fractals, the 
number of branches again connected in 0 is given by a positive integer or a positive real 
exponent, and is therefore equal to p . 
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Figure 3.7: Complex Mandelbrot Set: 2
1 0n n

z z z+ = +  

Figure 3.8: Complex Mandelbrot Set: 5.5
1 0n n

z z z+ = +  
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Figure 3.10: 3D Subset of Quaternion Julia Set (max. 12 iterations): 
2

1 0.08 0.8 0.03
n n

z z j k+ = − − −  

Figure 3.9: 3D Subset of Hypercomplex (Davenport) Mandelbrot Set (max. 8 iterations): 
2

1 0n n
z z z+ = +  
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3.4.2. Sierpiński Triangle 

 
This fractal is just one of many fractals originally developed by W. Sierpiński. However, most 
of his fractals follow the same pattern which is making holes into a regular geometric object 
using its own shape. This type of a fractal is typical of the Iterated Function Systems, but it is 
possible to write a recurrence relation and make it an escape-time fractal. 

 
In order to maintain the desired shape of the fractal, which is either a triangle, a pyramid, or a 
4D pyramid, we cannot use the magnitude of a hypercomplex number to determine if the 
sequence converges or diverges. Hypercomplex and lower-dimensional spaces use the 
Euclidean norm, which would generate a spherical appearance. For this purpose, I created a 
special norm for any hypercomplex number z a bi cj dk= + + + : 
 

 
0 0 0 0

else

a b c d a b c d
z

+ + + ≥ ∧ ≥ ∧ ≥ ∧ ≥
= 

+∞
 (3.4) 

 
The norm uses the Manhattan norm only for numbers that have all basis vectors positive, and 
otherwise returns infinity. This means that all numbers z  for which z = +∞  are forced to 

diverge in the first iteration. 
 
The relation for a complex number z a ib= + : 
 

 

1
2

1
1 2

2

2 1

2 else

n

n n

n

z i b

z z a

z

+

− >


= − >



 (3.5) 

 
The relation for a hypercomplex number z a bi cj dk= + + + : 
 

 

1
2

1
2

1
1 2

1
2

2

2

2

2 1

2 else

n

n

n n

n

n

z k d

z j c

z z i b

z a

z

+

− >


− >


= − >
 − >



 (3.6) 

 
It is also important to use 1 as the bailout value to determine divergence, otherwise the 
pyramids have improper sizes. 
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Figure 3.11: Sierpiński Triangle (6th iteration) 

Figure 3.12: Approximation of Sierpiński Pyramid (4th iteration) 
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3.4.3. Newton Fractal 
 
The Newton fractal is a complex boundary set which is characterized by applying Newton's 
method to a polynomial ( )p z . It divides the complex plane into regions, each of which is 
associated with a root of the polynomial, 1, 2,...,degk p= . It is significant for numerical 
analysis because it shows that Newton’s method can be very sensitive to the choice of the 
start point. 
 
Each point of the complex plane is associated with one of the deg p  roots of the polynomial 

in the following way: the point is used as the starting value 0z  for Newton's iteration: 

 

 1

( )

( )n n

p z
z z

p z
+ = −

′
 (3.7) 

 
generating a sequence of points 1 2, ,...z z  If the sequence converges to the root, then 0z  is an 

element of the region. 
 
The classical example of a polynomial used is 3( ) 1p z z= −  which solves the equation 3 1z =  
having one real and two complex roots. Therefore: 
 

 
3

1 2

1
.

3
n

n n

n

z
z z

z
+

−
= −  (3.8) 

 

  
 

Figure 3.13: Complex Newton Fractal: 
3

1 2

1

3
n

n n

n

z
z z

z
+

−
= −  
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3.4.4. Other Escape-time Fractals 
 

• Breeder is similar to the Mandelbrot’s main body, but it is inverted on the i-axis: 

1 (1 ) ,
n n n

z z z c+ = − +  

where c  is either equal to 0z  (Mandelbrot) or a hypercomplex parameter (Julia). 

 
• Phoenix is one of the most beautiful complex fractals (Figure 3.14). Using proper 

parameters ( 1 20.567, 0.5p p= = − ), it can resemble a butterfly: 
2

1 1 2

1 ,
n n n

n n

z z p p y

y z

+

+

= + +

=
 

where 1 2 and p p  are hypercomplex numbers, and 0 0y z= . 

 
• Spider is another fractal designed for complex numbers (Figure 3.15). Obviously, it 

resembles a spider: 
2

1

1 1,2

n n n

n
n n

z z y

y
y z

+

+ +

= +

= +
 

where 0 0y z= . 

 
• ManOWar is a peculiar name of a fractal with characteristics of Mandelbrot-Julia sets 

(Figure 3.16): 
2

1

1 ,
n n n

n n

z z y c

y z

+

+

= + +

=
 

where 0 0y z= . 

 
• Lambda fractal was originally developed by P. F. Verhulst in 1845: 

1 (1 ),
n n n

z cz z+ = −  

where c  is either equal to 0.5 (Mandelbrot) or a hypercomplex parameter (Julia) 
 

• There are many fractals created by M. Barnsley, but only a few can be easily redefined 
for hypercomplex spaces. This is one of them (Figure 3.17): 

1

( 1) Re 0

( 1) else
n n

n

n

z c z
z

z c
+

− ≥
= 

+
, 

where c  is either equal to 0z  (Mandelbrot) or a hypercomplex parameter (Julia). 
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Figure 3.14: Complex Phoenix Fractal:  

1 20.567, 0.5p p= = −  

Figure 3.15: Complex Spider Fractal 

Figure 3.17: 3D Subset of Quaternion 
Barnsley-Julia Fractal (max. 80 

iterations): 1 0.1c i= +  

Figure 3.16: 3D Subset of Hypercomplex 
(Davenport) ManOWar Fractal (max. 20 

iterations): 0c =  
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3.5. Random Fractals 

 
Although random fractals are neither the biggest nor the most popular group of fractals, it is a 
group with many practical applications. 
 
Natural objects do not contain identical scaled down copies within themselves, and so 
sometimes are not considered fractals at all. However, natural objects can often be classified 
as random fractals, that is, each smaller part is statistically similar to the whole. Random 
fractals can be generated by modifying the iteration process to include a probabilistic element. 
 
If we modify the Koch curve algorithm (Section 3.3.1) in such a way that the triangle in the 
middle points randomly (for example, determined by a coin toss) to either side of the original 
line, the final fractal shape looks very irregular compared to the exact Koch curve, but is 
closer to the shape of natural objects such as coastlines. 
 
3.5.1. Perlin Noise 
 
Perlin noise is one of many functions to generate landscapes, clouds, fire, smoke, and many 
other approximations of natural objects. 
 
Perlin noise is widely used in computer graphics, and it resulted from the work of Ken Perlin, 
who used it to generate textures. 
 
Many people use random number generators in their programs to create unpredictability, 
make the motion and behavior of objects appear more natural, or generate textures. Random 
number generators (RNG) themselves have certain properties that make them useless for 
generating fractal structures. An ideal uniform RNG would generate a completely new 
random value in a specific range of values each time called, which would result in completely 
random structures. 
 
Each landscape contains wide variations in height (mountains), medium variations (hills), 
small variations (boulders), tiny variations (stones), and so on. The same pattern of wide and 
small variations can be observed almost anywhere. The Perlin noise function recreates this by 
simply adding up noise functions at a range of different scales. 
 
To create a Perlin noise function, two things are needed, that is, a noise function and an 
interpolation function. 
 
A noise function is based on a random number generator with the following properties. In 
addition to a typical RNG, it requires one numeric parameter. It has to return the same random 
number each time called with the same parameter, but a different number each time called 
with a different parameter. This way, we can generate a set of random numbers corresponding 
to the input parameters. But, we do not have to, because the RNG returns a corresponding 
random value any time called. That is why it does not require much of the computer memory 
to execute. 
 
The generated values are only discrete random values, and we need to define a function. One 
way of doing so is to interpolate the values between these random values. The original Ken 
Perlin’s algorithm uses a simple linear interpolation, which in most cases seems to be enough. 
Of course, we can use better interpolation functions such as cubic splines, a windowed sinc 
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function, or the Gaussian function, but it certainly is not recommended to use point sampling, 
although it may generate interesting unnatural shapes. 
 
The noise function is now connected, and we can define parameters like amplitude or 
frequency. The amplitude represents the difference between the minimum and maximum 
values the function can have. The period, which remains constant for the function, is the 
distance between two neighboring random values. The frequency is defined as 1/period. 
 
If we take many of these interpolated functions with various frequencies and amplitudes and 
add them all together, another noise function is created. This is the Perlin noise function. 
 
The chosen frequencies and amplitudes are not exactly arbitrary. The most common advice is 
to use twice the frequency and half the amplitude for each successive noise function added. 
Sometimes, this is not convenient, for example, to create smooth rolling hills, we could use a 
Perlin noise function with large amplitudes for the low frequencies, and very small amplitudes 
for the higher frequencies. We could also make a flat, but very rocky plane choosing low 
amplitudes for low frequencies. 
 
To make it simpler, a single number is used to specify the amplitude of each frequency. This 
value is known as the Persistence. The term was originally coined by Mandelbrot. He defined 
noise with a lot of high frequencies as having a low persistence. 
 
Each successive noise function added is known as an octave. The reason for this is that each 
noise function is twice the frequency of the previous one. In music, octaves also have this 
property. 
 
This one-dimensional function can be easily extended to a higher-dimensional function by 
using higher-dimensional interpolations and adding the interpolated values together. 
 
 

 
 
 
 
 

Figure 3.18: Perlin Noise Texture on top 
of Quaternion Julia Fractal (max. 5 

iterations): 5
n+1z 0.6 0.8

n
z i= + +  
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3.6. Fractal Dimensions 
 
The actual definition of a fractal has not been furnished yet, although there have been a few 
attempts to do so (see the beginning of this chapter). The most frequently used definition is 
the one given by Mandelbrot. It states that a fractal is an object whose Hausdorff-Besicovitch 
dimension is greater than its topological dimension. The Hausdorff-Besicovitch dimension is 
often called the Hausdorff dimension. 
 
3.6.1. Hausdorff Dimension 
 
In mathematics, the Hausdorff dimension is a non-negative extended real number in the 
closed infinite interval 0,+∞  which is associated with any metric space. It was introduced 

in 1918 by the mathematician Felix Hausdorff [9]. Many of the techniques used to compute 
the Hausdorff dimension for highly irregular sets were created by Abram Samoilovitch 
Besicovitch [9]. It is also less frequently called the capacity dimension or fractal dimension. 
 
Intuitively, the dimension of a set, for example, a subset of Euclidean space, is the number of 
independent parameters needed to describe a point in the set. The topological dimension is 
one mathematical approach that models this idea. For instance, a point in the plane is 
described by two independent parameters (the Cartesian coordinates of the point), so we can 
say that the plane is two-dimensional. As can be expected, the topological dimension is 
always a natural number. 
 
However, the topological dimension behaves in quite unexpected ways on certain highly 
irregular sets such as fractals. The Hausdorff dimension gives another way how to define 
dimension, which takes the metric into account. It extends the concept of the topological 
dimension by relating it to other properties of the space such as area or volume. 
 
Let us take a closer, yet still very brief, look at the theory behind the Hausdorff dimension. 
The theory of the Hausdorff dimension is based upon the theory of measure developed earlier 
by Henri Lebesgue and Constantin Caratheodory. 
 
Suppose ( , )X d  is a metric space. In order to deal with the problems of this approach, 
Hausdorff defined an entire family of measures on subsets of X , one for each possible 

dimension )0,s ∈ +∞ . 

 
For example, if 3X = � , this construction assigns an s-dimensional measure sH  to all subsets 
of 3
� . For 2s = , it is expected that: 
• for the unit segment along the x-axis: 2 ( 0,1 {0} {0}) 0H × × =  

• for the unit square on the xy-plane: 20 ( 0,1 0,1 {0})H< × × < +∞  

• for the unit cube: 2 ( 0,1 0,1 0,1 )H × × = +∞ . 

 
The above example suggests that we can define a set A  to have Hausdorff dimension s  if its 
s-dimensional Hausdorff measure is positive and finite. This is not exactly true. The 
Hausdorff dimension of A  is the threshold value s  where below s  the s-dimensional 
Hausdorff measure is ∞  and above s  it is 0. It is possible for the s-dimensional Hausdorff 
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measure of an s-dimensional set to be 0 or ∞ . For instance, �  has dimension 1 and its 1-
dimensional Hausdorff measure is infinite. 
 
Let C  be the class of all subsets of X . For each positive real number s , let 

s
p  be the 

function diam( )sA A→  on C . The Hausdorff outer measure of dimension s , denoted sH  is 

the outer measure corresponding to the function 
s

p  on C . Thus, for any subset E  of X : 

 

 
1

( ) inf{ diam( ) }s s

i

i

H E Aδ

∞

=

= ∑  (3.9) 

 
where the infimum is taken over sequences { }

i i
A  which cover E  by sets, each with diameter 

δ≤ . Then: 
 

 
0

( ) lim ( ).s s
H E H Eδ

δ →
=  (3.10) 

 
It is possible to create a formula to calculate the Hausdorff dimension for IFS fractals. Let us 
revise what an IFS fractal is: 
 
Iterated Function Systems are a finite set of contraction maps 

i
w  for 1, 2,...,i n= , each with a 

contractivity factor 1
i

r < , which map a compact metric space onto itself. 

 
Then, there is a unique non-empty compact set A  such that: 
 

 
1

( ).
n

i

i

A w A
=

=∪  (3.11) 

 
In certain cases, to determine the dimension of the set A , we need the set to be open on the 
sequence of contractions 

i
w . For this purpose, we can use the following set V : 

 

 
1

( )
n

i

i

w V V
=

⊂∪  (3.12) 

 
where the sets in the union on the left are disjoint. 
 
Then the unique fixed point of w  is a set whose Hausdorff dimension is s  where s  is the 
unique solution of: 
 

 
1

1.
n

s

i

i

r
=

=∑  (3.13) 

 
For r  independent of i , we can write directly 1s

nr = . 
 
One of the simplest examples to derive the formula for calculating the Hausdorff dimension is 

this one: Let us divide a unit segment into n equally long pieces, each of which is 
1

:r
n

=  in 
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length. If we were to divide a square into n  equal sub-squares, each having r  long sides, the 

length would be defined as 1
2

1
:r

n
= . Obviously, the formula for a cube would be 1

3

1
:r

n
= . 

Therefore, we can write that generally 1

1
:

s

r
n

=  where s  is the dimension of an object. If we 

solved for s  by means of the equation 1

1
s

r
n

= , the result would be: 

 

 
ln

:
1

ln
H

n
D

r

=  (3.14) 

 

where n  is the factor of the change in length, and 
1

r
 is the factor of the change in scale. 

H
D  

denotes the Hausdorff dimension, but basically :
H

D s= . 

 
The calculation of the topological dimension by this formula is clear. Let us see what happens 
if we apply the formula to a fractal. 
 

The Koch curve is a perfect example. In each iteration, the length is reduced to 
1

3
 of the 

length in the previous iteration, and the number of self-similar segments is 4. Hence, we can 
substitute these numbers into the formula, which gives the Hausdorff dimension of the curve: 
 

 
ln 4

1.2618...
ln 3H

D = ∼  (3.15) 

 
Other examples of Hausdorff dimensions are: 

• The Euclidean space n
�  has 

H
D n= . 

• The circle 1
S  has 1

H
D = . 

• Countable sets have 0
H

D = . 

• The Cantor set (a zero-dimensional topological space) is a union of two copies of 

itself, each copy shrunk by a factor 
1

3
. This implies the Hausdorff dimension to be 

ln 2

ln 3
, which is approximately 0.63. 

• The Sierpiński triangle is a union of three copies of itself, each copy shrunk by a factor 

of 
1

2
, therefore 

ln 3

ln 2
, which is approximately 1.58. 

• The Mandelbrot set (the border) has the Hausdorff dimension equal to 2. A difficult 
proof was given by Mitsuhiro Shishikura [11]. 

 
Often, it is very difficult to calculate the Hausdorff dimension for fractals such as the 
Mandelbrot set. Therefore, various closely related definitions of fractional dimensions were 
invented. For example, the box-counting dimension (see 3.6.2.). 
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These definitions (topological dimension, Hausdorff dimension, box-counting dimension) 
give the same value for many shapes. However, they give different values for some highly 
irregular curves. These curves were originally called "monster curves" because they seemed 
so bizarre and non-intuitive at the time. 
 
3.6.2. Box-counting and Cube-counting Dimension 
 
The box-counting dimension, or the Minkowski-Bouligand dimension as it is often referred 
to, is another way of determining the fractal dimension of a set in a metric space. 
 
In order to calculate the box-counting dimension of a set in a metric space, we need to create a 
grid of equally-sized boxes (squares), and count, how many boxes are required to cover the 
set. The box-counting dimension is calculated by determining how this number changes as we 
make the boxes smaller, and thus the grid finer. 
 
Let us suppose that ( )n r  is the number of boxes of side length r  required to cover a set. Then 
the box-counting dimension is defined as: 
 

 
0

ln ( )
: lim .

1
ln

B
r

n r
D

r

→
=  (3.16) 

 
If the limit does not exist, we can still determine the upper box dimension 

B
D  and the lower 

box dimension 
B

D  which correspond to the upper limit and lower limit, respectively. In other 

words, the box-counting dimension is defined only if the upper and lower box dimensions are 
equal. The upper box dimension is sometimes called the entropy dimension, Kolmogorov 
dimension, Kolmogorov capacity, or upper Minkowski dimension, while the lower box 
dimension is also called the lower Minkowski dimension. 
 
There are some interesting properties of these dimensions. Both box dimensions are finitely 
additive, that is, if 1 2{ , ,..., }

n
A A A  is a finite collection of sets then: 

  
 1 2 1 2( ... ) max{ ( ), ( ),..., ( )}.

B n B B B n
D A A A D A D A D A∪ ∪ =  (3.17) 

 
However, the dimensions are not countably additive, so the equality does not hold for an 
infinite sequence of sets. For example, the box dimension of a single point is 0, but the box 
dimension of the collection of rational numbers in the interval 0,1  has dimension 1. The 

Hausdorff dimension, by comparison, is countably additive. 
 
Both dimensions are strongly related to the more popular Hausdorff dimension. For many 
fractals all these dimensions are equal. For example, the Hausdorff dimension, lower box 

dimension, and upper box dimension of the Cantor set are all equal to 
ln 2

ln 3
. However, the 

definitions are not equivalent. 
 
The box dimensions and the Hausdorff dimension are related by the inequality: 
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H B B

D D D≤ ≤  

 
It is possible to extend the box-counting dimension to a higher dimension than 2D. The 
definition remains the same, except that this time we use cubes instead of boxes, and r  is just 
the length of an edge of a cube. The value n  is the number of cubes required to cover a set. 
Cubes are usually objects in a 3D space, but they can very well represent objects in a 4D 
space, or other spaces. 
 
The main advantage of the box/cube-counting dimension is that it can be used in computer 
algorithms. Since it is technically impossible to exactly calculate the limit from the definition, 
we have to approximate. First, we have to choose just one value of r , and compute the 
number of boxes/cubes. This should be a simple enough task, because we just count the 
number of boxes/cubes which contain any part of the set measured. It may be important to 
note that a fractal is usually only the border of an object. The second thing to be done is to 
compute the number of boxes/cubes with a different value r . This is all we need to calculate a 
rough approximation of 

B
D  of the object since 

B
D  represents the direction of a line in a log-

log graph, where 
1

ln
r

 is on the x-axis and ln ( )n r  is on the y-axis. Knowing that it is a line, 

we can calculate the direction from the two computed values of ( )n r  by calculating the 
direction of the vector between these two points in the graph: 
 

 1 2

1 2

ln ( ) ln ( )
.

1 1
ln ln

B

n r n r
D

r r

−
≅

−

 (3.18) 

 
To calculate a more accurate approximation of 

B
D , we simply compute more than just two 

points in the graph, and then use a convenient function to extrapolate the line to get a more 
precise result. 
 
Another advantage of this algorithm is that it can be used for pictures or other data inputs. 
 
Several examples of approximations of the box/cube-counting dimension impossible to 
calculate by the Hausdorff dimension are: 

• a coastline: 1.26 
• the surface of a human brain: 2.76 
• non-eroded rocks: 2.2 – 2.3 
• the circumference of a cloud’s projection: 1.33 

 
3.6.3. Correlation dimension 
 
Yet another measure of fractal dimension is called the correlation dimension. It is designed 
specifically to measure dimensions of sets containing random points in space, or rather 
chaotically placed points in space. 
 
The real feature of the correlation dimension is in determining the dimensions of fractal 
objects. This method has the advantage of being straightforward and quick to calculate, and it 
often produces the same results as with other methods. 
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Given a set of n  points in an s-dimensional space: 
 
 1 2( ) ( ( ), ( ),..., ( ))

s
x i x i x i x i=
�

 (3.19) 

 
where 1, 2,...,i n= , the correlation integral ( )C ε  is calculated by: 
 

 
2

( ) lim
n

g
C

n
ε

→∞
=  (3.20) 

 
where g  is the total number of pairs of points having a distance between them less than or 
equal to distance ε . As the number of points tends to infinity, and the distance between them 
tends to zero, the correlation integral, for small values of ε , has the form: 
  
 ( ) .C νε ε≅  (3.21) 
 
If the number of points is sufficiently large, and evenly distributed, a plot of the correlation 
integral versus ε  will show an estimate of ν . This idea can be better understood by realizing 
that for higher-dimensional objects there will be more ways for points to be close to each 
other, so the number of pairs close to each other will rise more rapidly for higher dimensions. 
 
This method can be used to distinguish between completely random sets and chaotically 
random sets having a specific pattern. 
 
The disadvantage is that it is rather difficult to use for numerically generated fractals in 
Euclidean spaces if we do not know the exact locations of the points of a fractal set, especially 
if we want to use computers to do calculations. Without knowing the location of points, it is 
statistically impossible to try and hit a single point in the set by neither random nor systematic 
testing of points in such a set, because this is exactly what we have to do. If we, indeed, do 
not hit a single point, it is as if we were calculating the dimension of an empty set. 
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4. Visualization of Escape-time Fractal Sets 
 
Although IFS fractals can be used for fractal compression and random fractals can generate 
realistic landscapes, escape-time fractals produce the most beautiful images. 
 
It is necessary to color fractals in order to visualize them, but no one is to say how to do that. 
This gives vast possibilities to do so. Visualization techniques have greatly evolved recently 
with the improvements in graphic cards which can now display a high number of colors, and 
also thanks to the imagination of several authors of programs generating fractals. 
 
4.1. Complex Fractal Sets 
 
A complex number can be represented by a point in a plane where the x and y coordinates are 
the real and imaginary parts of the number. For the fractals produced by the iteration of a 
complex recurrent relation, each point of the part of the plane displayed on the screen is 
iterated, and the value of the iterated point is monitored during the successive iterations. The 
positions of these points showing the successive values plot an orbit. For some initial complex 
values, that is, points of the plane, the orbit is enclosed in a limited region of the plane, or it 
can even follow a cyclic trajectory. In other cases, the orbit escapes towards the infinity after 
a few iterations, which means that the sequence of values diverges. The question is how to 
determine that the sequence diverges. For this purpose we usually test the sequence of 
magnitudes of the iterated complex point. Of course, there are other ways to determine the 
behavior of a complex point that lead to a different graphical output. An infinite number of 
iterations would be necessary for us to be certain of the behavior of only one point, which is 
something we cannot afford in an algorithm. However, for most of the points it is possible to 
detect divergence after only an acceptable number of iterations. 
 
There are a few ways to show the result of a computation concerning a point. The first one is 
to use a third coordinate axis obtaining a fractal relief. The other more common method lies in 
the use of a scale of colors to display this value. The second coloring technique simply assigns 
a color according to the number of iterations needed to determine the convergence of a point. 
This is the most classic technique. It used to be very popular, because it does not require a 
high-color display. It is often enough to use only two colors, representing divergence and 
convergence. The boundary between these two colored areas is the actual approximation of a 
fractal set. 
 
Such techniques do not generally allow for a smooth enough transition between adjacent 
colors. However, it is desirable for many fractal images to have clear limits between some 
areas of different colors, for example, an area of red shades and an area of green shades. 
 
The desire for smoother transitions leads to algorithms that can make use of the full potential 
of true-color graphic cards that are able to display more than 16 million colors, which is the 
maximum the human eye can distinguish. Note that it is a standardized range of colors 
missing some colors that are not present in nature. 
 
Linas Vepstas [10] has created an interesting algorithm giving a variation of colors by a 
modification of the above method. Basically, its principle is to compute not only the number 
of iterations needed to detect the divergence, but, moreover, how distant the point is from the 
limit between two successive iterations. 
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Other methods, known for a longer time, may also be useful. For example, we can use the 
angle between the orbit and the x-axis at the time when the divergence is detected. Or, we can 

use the potential calculated by the formula 
log

2iterations

z
. 

 
Points can be colored not only by determining the divergence. For example, Paul Carlson has 
developed a few “orbit trap” algorithms and adapted them to the legendary program “Fractint” 
and another well known program called “Ultra Fractal”. The principle is to test if the orbit of 
the point falls into a circle, a square, etc., and to color the point according to the distance 
between the point and the centre of such a figure. The images obtained show fractal structures 
consisting of spheres, cylinders, or cones with a very characteristic "solid" appearance. 
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4.2. Hypercomplex Fractal Sets 
 
Visualizing hypercomplex fractals is different from the methods developed for complex 
fractals. The main issue is that such multi-dimensional sets are impossible to visualize at 
once. Only one subset can be visualized at a time. Obviously, the subset can be 3-dimensional 
at most. This means that we have to create a mapping from the higher-dimensional space to a 
lower-dimensional space. One way of doing so is to hold one or more dimensions constant, 
depending on the type of algebra used. 
 
If we wanted to display only a 2D subset of such a set, we could use the visualization 
techniques for complex fractals. 
 
Visualization of 3D subsets is quite different, and we have a few options to do so. Note that 
we can generate multiple 3D fractal subsets varying one of the other dimensions (previously 
constant) according to a time rule, which creates a time-dependent animation. There are 
various techniques to make such visualization efficient, but let us focus on generating a single 
3D subset. 
 
Beside the following methods, there are many other 3D rendering methods, such as radiosity 
or photon maps, that have to deal with very similar problems generating approximations of 
fractal sets. 
 
4.2.1. Ray Tracing 
 
Ray Tracing is a rendering method based on global illumination. It traces rays of light from 
the eye back through the image plane (screen) into the scene. Then the rays are tested against 
all objects in the scene to determine if they intersect any objects. If the ray misses all objects, 
then that pixel is set to the background color. Such an object can be a fractal set. Ray tracing 
handles shadows, multiple specular reflections, and texture mapping in a very easy straight-
forward way. 
 
Note that ray tracing is a point sampling algorithm. Like all point sampling algorithms, this 
leads to the potential problem of aliasing, which is manifested in computer graphics by jagged 
edges or other visual artifacts. 
 
As already mentioned, a ray is projected through each pixel and tested for intersection against 
all objects in the scene. If there is an intersection with an object, then several other rays are 
generated. Shadow rays are sent towards all light sources to determine if any objects occlude 
the intersection point. If the surface is reflective, then a reflected ray is generated. If the 
surface is not opaque, then a transmitted ray is generated. Each of the secondary rays is tested 
against all the objects in the scene. 
 
The reflective and/or transmitted rays are continually generated until the ray leaves the scene 
without hitting any object or a maximal recursion level has been reached. This creates a ray 
tree. 
 
A local illumination model is applied at each level and the resultant intensity is passed up 
through the tree, until the primary ray is reached. Thus we can modify the local illumination 
model at each tree node by: 
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 ,
local R T

I I K R K T= + +  (4.1) 

 
where R  is the intensity of light from the reflected ray and T  is the intensity of light from the 
transmitted ray. 

R
K  and 

T
K  are the reflection and transmission coefficients. For a very 

specular surface, such as plastic, we sometimes do not compute the local intensity 
local

I , but 

only use the reflected/transmitted intensity values. 
 

The reflected ray is calculated by 
projecting 

in
R  onto N , which is cosN θ   
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The general idea behind ray-object intersections is to insert the mathematical equation for the 
ray into the equation for the object and determine if there is a real solution. If there is a real 
solution, then there is an intersection, and we must return the closest point of intersection and 
the normal N  at the intersection point. For a shadow ray we must determine whether any ray-
object intersection is closer than the ray-light intersection. For a ray tested against a boundary 
object, we just return a simple hit or no hit. For texture mapping we need the intersection 
point relative to some reference frame for the surface [13]. 
 
The problem with fractal sets is that we do not know the equation for the boundary set to be 
intersected. We merely know the recurrence relation which can be used to create many 
boundary sets (approximations of the real set). For complex fractals, we had to test each point 
in a bounded image plane, that is, 2( )O n pixels. However, we have to test 3( )O n  points in 
order to isolate the boundary set in 3D, which is a major performance issue. 
 
A second major issue involves the way lighting is computed in 3-dimensional computer 
graphics. To calculate smooth shading, the angle between a line from the light source to the 
surface of the object and the normal to the surface of the object is needed. Since fractals are 
infinitely “complex”, they do not have normals. In 1989, John Hart generalized an equation 
from complex numbers that gives a distance estimate between a point and the surface of a 
Julia set in the quaternions. By using this formula, a vast majority of tests in the 3D space can 
be skipped and only the points near the quaternion Julia set are tested. In addition, this 
distance estimation can be used to calculate an approximate normal, so that lighting can be 
calculated. The existence of this formula is the main reason why there are so many computer 
programs that can generate only quaternion Julia sets. The formula: 
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requires to calculate additional sequence of points alongside 

n
z : 

Figure 4.1 
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 1 2 .

n n n
z z z+
′ ′=  (4.3) 

 
The first point in this sequence should always be 0 1z′ = . 

 
The idea is simple. At any time during ray tracing we can query the distance estimator, and it 
will tell us the distance from our ray's origin to the closest point in the Julia set (in any 
direction - not necessarily in the direction of the ray). We can then safely take a step of the 
same distance along the ray direction, because we are guaranteed not to skip over any points 
in the set. 
 
There are many other general improvements of Ray tracing to make it faster. 
 
The main characteristics are: 

• the most frequently used algorithm to visualize hypercomplex fractals 
• relatively quality images – The algorithm calculates a color for each pixel. It is often 

desirable to calculate the colors of sub-pixels in order to implement full-screen anti-
aliasing. 

• unnatural appearance – Each pixel color is calculated with great precision considering 
every aspect of a scene based on a mathematical model. Since the generated fractals 
are only approximations, they do not exhibit this feature. 

• slow generation – This is especially true if we want to generate more views from 
multiple observation angles. 

• no available hardware support 
 
4.2.2. Cube Marching 
 
Cube Marching, or Marching cubes, is a computer graphics algorithm, published at the 1987 
SIGGRAPH conference by Lorensen and Cline [16], for extracting a polygonal mesh of an 
isosurface from a 3D scalar field (sometimes called voxels). 
 
The algorithm proceeds through the scalar field, taking eight points at a time (thus forming an 
imaginary cube), and determines the polygons that must be created (if any) to represent the 
part of the isosurface that intersects this cube. 
 
This is done by creating an index to a pre-calculated array of 256 possible polygon 
configurations 8(2 256)=  within the cube, and by treating each of the 8 scalar values as a bit 
in an 8-bit integer. If the scalar's value is higher than the iso-value, that is, it is inside the 
surface, then the appropriate bit is set to one, while if it is lower (outside), it is set to zero. 
There are no scalar values for fractal isosurfaces, but we can use a bitwise value indicating 
whether a point is in the set or not. The final value, after all 8 scalars are checked, is the actual 
index to the polygon configuration array. 
 
Normally, each vertex of the generated polygons is placed at the appropriate position along 
the cube's edge by linearly interpolating the two scalar values connected by that edge. 
However, this is not possible with fractal sets because we do not know the exact mathematical 
formula, such as with quadrics, to directly generate a fractal set. To go around this problem, 
we can introduce the successive approximation algorithm. 
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Successive approximation has the advantage of not having to know much about a set. We still 
only need to be able to test the divergence of a point in a fractal set. Since we know that one 
of the ends of the edge is inside the shape and one is outside, we can check an additional point 
between these two. We should now have a region half the size in which we know the surface 
resides. Repeating this process recursively only a few more times gives a very accurate result, 
but introduces additional slowdown. It is better to use this algorithm rather than decrease the 
sizes of cubes, making more polygons because the algorithm of Marching cubes produces 
high numbers of polygons. 
 
The pre-calculated array of 256 cube configurations can be obtained by reflections and 
symmetrical rotations of 15 unique cases (Figure 4.2). 
 
Calculating normals as gradients of the scalar field at each grid point is not possible for the 
same reason as described above. We can however calculate normals of the generated 
polygons (flat shading), and compute the average of these normals at each of the vertices of 
the polygons (smooth shading), or use any other technique of generating normals from 
connected polygons. Normals are essential for shading the resulting mesh with some 
illumination model. 
 
The applications of this algorithm are mainly medical visualizations such as CT and MRI scan 
data images, and special effects, or 3D modeling. 
 
Note that the algorithm was patented for 20 years until 2005. 
 
The main characteristics are: 

• scale independence – Polygons unlike pixels can be exactly rendered at any scale. 
Pixels have to be interpolated. 

• fixed subdivision – Every cube has the same size, so even for flat surfaces too many 
polygons are generated. This problem can be overcome by replacing the polygons 
having approximately equal normals by larger polygons. This is not efficient if we 
require only triangles which are the best polygons to render. Moreover, fractals are too 
complex to even bother with this issue. 

• lesser precision – If the polygons are larger than pixels, certain artifacts can exhibit 
themselves in the form of an edgy surface. 

• easy processing – Created polygons are easy to transform and render. 
• hardware support – Almost all graphic cards have 3D acceleration to render polygons 

quickly, especially triangles. 
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Figure 4.2: 15 Unique Cases (Cube Marching) 



 45 

5. Application Environment 
 
Several of my programs were used to generate pictures and calculate dimensions. Complex 
fractals were rendered using the program “Flashlight” even though my other program 
“QuadFractal” could have been used for this task. “Flashlight” can generate many more 
variations of complex fractals, but it lacks the support of hypercomplex fractals. Let us focus 
on “QuadFractal”. 
 
5.1. QuadFractal 
 
“QuadFractal” is a multi-purpose open-source application under GNU GPL for generating 
fractals in Euclidean spaces. It was developed in C++. The GUI was created only for a Win32 
environment. 
 
The main features are: 

• it generates and renders 3D models from hypercomplex (quaternion and Davenport) 
fractals 

• it implements a 2D slice view to visualize 2D subsets of hypercomplex fractals 
• it contains a dimension calculator 
• it uses OpenGL with extensions 
• it handles several visualization modes including reflections 
• it enables the use of GLSL shaders 
• it implements intuitive rotation using quaternion arcball 
• it contains procedural texture generator 
• it includes a solid material editor 
• it provides an internal file format (INV3) 
• it imports from 3ds and Zipper models 
• it exports to X3D, VRML97, and C/C++ header 

 
Updates of this program are available at [14]. 
 
The entire program is multi-threaded, but the use of mutex objects is avoided wherever 
possible to eliminate unnecessary waiting states. One way to do this is to use test and set 
functions, or make local copies of variables/classes. Of course, stability of the program is not 
compromised in any way. Threads in the application are designed to leave the GUI thread 
unoccupied and to perform simultaneous calculations and rendering. Currently, they are not 
“optimized” for multi-core CPUs, which requires dividing of individual calculations into 
threads. Usually, this can be implemented easily, and it is likely to be added in the future 
versions. 
 
5.1.1. Generation of 3D Models 
 
Visualization of 3D models is implemented using OpenGL. In order to use OpenGL, points, 
lines, or polygons have to be generated. The best way to visualize 3D models is to use 
triangles. Cube Marching was used to generate an isosurface consisting of triangles. Note that 
the program can visualize the edges of triangles (wire-frame), or single points (vertices of 
triangles) as well. 
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In order to use Cube Marching, we have to be able to determine if a point in a 3D space is a 
part of a fractal set. Since hypercomplex fractals are 4-dimensional sets, a simple method was 
devised to select a 3D subset of a hypercomplex space. One of the four dimensions is held 
constant, for instance, the one corresponding to the basis vector k: 
 
void Permute4(Quad &ret, float x, float y, float z, float c) { 

 // a point (x,y,z) is mapped into a hypercomplex space 

// using the constant c 

 ret.r = x; ret.i = y; ret.j = z; ret.k = c; 

} 

 
There are three more similar functions. All of them return the result in a variable “ret” instead 
of using the return statement. The reason for this is performance because by using the 
constructor of “Quad”, one more copy operation would be required when the function returns. 
The advantage of using constructors is a neat code: 
 
void Permute4(float x, float y, float z, float c) { 

 return Quad(x, y, z, c); 

} 

 
Since all 4 functions have the same arguments, a single pointer is used to reference the one 
chosen in a GUI dialog. Instead of using a complicated statement to call the function like this 
one: 
 
 switch(permutation) { 

  case 0: 

   Permute1(f4thParam, x, y, z); 

   break; 

  case 1: 

   Permute2(x, f4thParam, y, z); 

   break; 

  case 2: 

   Permute3(x, y, f4thParam, z); 

   break; 

  case 3: 

   Permute4(x, y, z, f4thParam); 

   break; 

  default: QFASSERT(false); // invalid permutation 

 } 

 
a single line of code is used: 
 
setpoint(cube[0], x, y, z, f4thParam); 

 
providing we have initiated the function in the setup: 
 
 switch(permutation) { 

  case 0: 

   setpoint = Permute1; 

   break; 

  case 1: 

   setpoint = Permute2; 

   break; 

  case 2: 

   setpoint = Permute3; 
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   break; 

  case 3: 

   setpoint = Permute4; 

   break; 

  default: QFASSERT(false); 

 } 

 
Similar techniques are used throughout the program. Note that these 4 functions are static 
functions. For member functions of a class, a different type of call has to be made: 
 
(this->*TestPoint)(q); 

 
where TestPoint is a pointer to one of the functions testing the divergence of a point in a 
hypercomplex space, such as: 
 
unsigned int Fractal::TestPointMandelbrot(const Quad &z0) { 

 Quad z = z0, t; 

 int numIter = 0; 

 bool bout = true; 

 do { // z = z^2 + z0 

  square(t, z); 

  add(z, t, z0); 

 } while(++numIter < nMaxIter && (bout = norm2(z) < fBailout2)); 

 return bout ? INF : numIter; 

} 

 
The macro “INF” represents infinity by a large integer. The function norm2(z) calculates 
the squared Euclidean norm of a hypercomplex number z. These test point functions are 
defined only once for both implemented algebras (quaternion and Davenport’s), which means 
that analytic functions are also implemented using pointers if they differ in definition. In the 
case of the Mandelbrot set, square(z) function can be calculated faster than 
multiply(z, z), and it is much faster than pow(z, 2). The implementation through 
pointers prevents the inline function expansion, so the use of the “ret” variable is beneficial. 
 
The iterated relations could be implemented more conveniently using C++ operators 
sacrificing a few clock cycles: 
 
z = z * z + z0; 

 
Obviously, the iteration loop is the innermost loop in algorithms, which means that most CPU 
cycles are burnt in this loop. Unfortunately, personal computers are not designed for 
accelerated calculations of analytic functions. They are designed to handle simple vector 
operations, such as multiplying two 2 vectors, each element individually. So the use of 
extended instruction sets is pointless. 
 
However, there are other ways to accelerate calculations. Since the OpenGL’s internal format 
of numbers is single-precision floating-point, the program uses this format as well. Moreover, 
it enables the lower precision floating-point calculations that are accurate enough for single-
precision numbers. 
 
The main recursive procedure that steps through a 3D grid follows: 
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void Fractal::SubDivide(int level, float x, float y, float z, float size) { 

 if(bAbort) return; // a simple stop flag 

 if(level <= nMaxLevel) { 

  if(level > nMinLevel) { 

   if(CanSkip(x, y, z, size)) return; 

  } 

  level++; 

  size *= 0.5f; 

  SubDivide(level, x + size, y, z, size); 

  SubDivide(level, x + size, y + size, z, size); 

  SubDivide(level, x, y, z, size); 

  SubDivide(level, x, y + size, z, size); 

  SubDivide(level, x, y, z + size, size); 

  SubDivide(level, x, y + size, z + size, size); 

  SubDivide(level, x + size, y, z + size, size); 

  SubDivide(level, x + size, y + size, z + size, size); 

  if(level == 4) { // 100 / (8 ^ (4 - 2)) = 1.5625f 

   PostMessage(whandle3, WM_USER_PROGRESS, 

     round(++nProgress * 1.5625f), NULL); 

  } 

 } else { 

  Quad cube[8]; 

  unsigned int vals[8]; 

  TestCubePoints(cube, vals, x, y, z, size); 

  MarchCube(cube, vals); 

 } 

} 

 
The variable “nMaxLevel” defines the precision of a grid, thereby the number of generated 
triangles and their size. The argument “size” defines the initial size of the entire grid, a cube 
with the center at ( , , )x y z . 
 
The function divides a cube into 8 half-sized cubes, and, after the maximal recursion level is 
reached, eight vertices of a cube are tested in TestCubePoints() and triangles are 
generated in MarchCube(). 
 
In the fourth recursion level, a message is posted into the GUI thread stating the progress of a 
calculation in percents. This can be done because we know how many cubes are tested in the 
fourth level. 
 
Note that PostMessage() is a safe way to deliver the message. We could use 
SendMessage(), which would work fine until we tried waiting for the thread from the GUI 
thread when it exits. This could produce a deadlock. 
 
Notice that the function round() is used to round a float number to the closest integer. This 
function is not implemented by any standard C/C++. There are many custom functions that 
can be used. The actual function used was taken from [15]: 
 
inline int round(double x) { 

 const int p = 52; 

 const double c_p1 = static_cast<double>(1L << (p / 2)); 

 const double c_p2 = static_cast<double>(1L << (p – p / 2)); 

 const double c_mul = c_p1 * c_p2; 

 const double cs = 1.5 * c_mul; 

 x += cs; 

 const int a = *(reinterpret_cast<const int *>(&x)); 



 49 

 return a; 

} 

 
A clever compiler would compile this code as only one addition. The recommended way of 
rounding on Intel compatible processors is as follows: 
 
inline int round(double x) { 

 int a; 
 __asm { 
  fld x 
  fistp a 
 } 
 return a; 
} 
 
which is only slightly slower because it uses FPU unlike the previous method. 
 
The disadvantage of these two methods is that they both round 0.5, 1.5, … to 0, 1, … instead 
of 1, 2, …, but, practically, there are no consequences of this behavior in the application. 
 
The big advantage is that the described functions are many times faster than the C/C++ 
truncation implemented through casting or constructors. 
 
Let us return to the procedure SubDivide(). After “nMinLevel“ is reached, a cube is tested 
whether it can be skipped or not, that is, whether it contains any parts of a set or not. The 
function CanSkip() is rather straightforward: 
 
bool Fractal::CanSkip(float x, float y, float z, float size) { 

 Quad q; 

 setpoint(q, x, y, z, f4thParam); 

 if((this->*TestPoint)(q) < nIterThr) { 

   setpoint(q, x + size, y, z, f4thParam); 

   if((this->*TestPoint)(q) < nIterThr) { 

     setpoint(q, x + size, y, z + size, f4thParam); 

     if((this->*TestPoint)(q) < nIterThr) { 

       setpoint(q, x, y, z + size, f4thParam); 

       if((this->*TestPoint)(q) < nIterThr) { 

         setpoint(q, x, y + size, z, f4thParam); 

         if((this->*TestPoint)(q) < nIterThr) { 

           setpoint(q, x + size, y + size, z, f4thParam); 

           if((this->*TestPoint)(q) < nIterThr) { 

             setpoint(q, x + size, y + size, z + size, f4thParam); 

             if((this->*TestPoint)(q) < nIterThr) { 

               setpoint(q, x, y + size, z + size, f4thParam); 

               if((this->*TestPoint)(q) < nIterThr) return true; 

             } 

           } 

         } 

       } 

     } 

   } 

 } 

 return false; 

} 
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It gradually tests all 8 vertices and determines the divergence. The function TestPoint() 
returns the number of iteration after which the divergence was determined. If this number is a 
very small number, such as 1 (nIterThr), it is very unlikely that the vertex would represent a 
point near the actual fractal set. Only if all 8 vertices are determined to be far from the fractal 
set, the tested cube can be skipped. Of course, this is not completely safe, but it can usually 
increase the performance by 50% - 90%. The variable “nIterThr“ can be changed in the GUI. 
This improvement can also be used to find a fractal set inside a bigger part of a 3D space. 
 
Another recursive algorithm called successive approximation was used to increase the 
precision of the position of a point located on an edge of a cube: 
 
void Fractal::ApproxPoint(int level, tVertex &vert, const Quad &a, const 

Quad &b, unsigned int vala) { 

 Quad t = {(a.r + b.r) * 0.5f, (a.i + b.i) * 0.5f, (a.j + b.j) * 0.5f, 

(a.k + b.k) * 0.5f}; 

 if(level < nApprox) { 

  const bool tp = (this->*TestPoint)(t) >= INF; 

  if((vala >= INF && !tp) || (vala < INF && tp)) { 

   ApproxPoint(level + 1, vert, a, t, vala); 

  } else { 

   ApproxPoint(level + 1, vert, t, b, vala); 

  } 

 } else { 

  getpoint(vert, t); 

 } 

} 

 
A 3D vertex between points a and b is returned. The argument “vala” is the result of 
TestPoint(a). 
 
The function getpoint() maps a hypercomplex point back to a 3D vertex according to the 
choice of a 3D subset. 
 
5.1.2. Generation of 2D Views 
 
2D views are basically approximations of 2D subsets of hypercomplex fractals. Only a very 
simple method based on the number of iterations is used to color the generated pictures. 
Additionally, full-screen anti-aliasing is implemented to eliminate jaggy areas. 
 
This is a part of the code used to generate 2D views: 
 
 Quad q; 

 tVertex c, rot; 

 getpoint(c, center); // get the center of a 3D area 

 

 unsigned int dt = GetTickCount(); // a timer 

 float y = c.y + asize; 

 unsigned int cy, _cy; 

 cy = _cy = nSize; 

 do { 

  RGBQUAD *p = ptr + (cy - 1) * nSize; 

  float x = c.x - asize; 

  unsigned int cx = nSize; 

  do { 

   unsigned int sum[3] = {0, 0, 0}; // RGB for FSAA 
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   float yAA = y; 

   unsigned int cyAA = nAA; 

   do { // FSAA inner loop 

    float xAA = x; 

    unsigned int cxAA = nAA; 

    do { 

     rotate2d(rot, xAA, yAA, rotmatrix); 

     setpoint(q, rot.x, rot.y, rot.z, f4thParam); 

     xAA += fstepAA; 

     unsigned ni = (this->*TestPoint)(q) & 0xFF; 

     sum[0] += palette[ni].rgbBlue; 

     sum[1] += palette[ni].rgbGreen; 

     sum[2] += palette[ni].rgbRed; 

    } while(--cxAA); 

    yAA -= fstepAA; 

   } while(--cyAA); 

   RGBQUAD a = {sum[0] >> bitshift, sum[1] >> bitshift, 

sum[2] >> bitshift, 0}; 

   *p++ = a; // store a pixel 

   x += fstep; 

  } while(--cx); 

  y -= fstep; 

  if(GetTickCount() - dt >= 40) { 

   if(bAbort) break; 

   PostMessage(hwnd, WM_USER_REDRAW, nSize-_cy, nSize-cy+1); 

   _cy = cy - 1; 

   dt = GetTickCount(); 

  } 

 } while(--cy); 

 
Every 40 ms, which corresponds to 25 FPS, a changed part of the window is redrawn. This is 
optimal because the human eye can distinguish only 24 FPS. 
 
The function rotate2d() uses a 3D rotation matrix to rotate a point ( , ,0)xAA yAA . The 
returned 3D point is then used in setpoint() to get the corresponding hypercomplex 
point. The 3D matrix is automatically created by rotating an object in the application’s 3D 
view. 
 
Note that >>  is the right logical shift, which can be used as a fast replacement for divisions 

by a power of 2: 
2y

x
x y= >> . 

 
5.1.3. Calculating Box/Cube-counting Dimension 
 
Technically, box/cube-counting dimension calculations are very similar to generating 
visualizations. In the case of the box-counting dimension, let us take the 2D view code as a 
template. If we replace the anti-aliasing by a grid refinement and add cube skipping, we will 
get almost what we need. 
 
The innermost code for the box-counting dimension: 
 
 rotate2d(rot, xi, yi, rotmatrix); 

 setpoint(q, rot.x, rot.y, rot.z, f4thParam); 

 if((this->*TestPoint)(q) >= INF) bIn = true; 

 else bOut = true; 

 if(bIn && bOut) { 
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  ncount++; 

  goto loop_out; 

 } 

 
A grid refinement is used to better determine if any part of a fractal set is covered by a box, 
that is, if there is a point in the grid refinement that diverges, and another point that 
converges, we can say that the box probably covers a part of a fractal set (convergence is not 
exactly determined). In such a case, we add 1 to a counter. 
 
In the end, we use the definition from section 3.6.2. 
 
Cube-counting dimensions are constructed similarly, but they take much longer time to 
compute. 
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6. Results 
 
6.1. Visualizations 
 
Using the program “QuadFractal”, we managed to visualize 4 main approximations of 3D 
subsets of hypercomplex fractal sets, and many 2D subsets of these 3D subsets. Of course, 
there are more than four 3D subsets. Additional 3D subsets are not very interesting because 
they are created by flipping and rotating these four subsets. However, potentially interesting 
3D subsets can be created by 4D rotations. The disadvantage is that 4D rotations are hard to 
setup so they are not implemented, but they may find their way into the program in the 
upcoming versions. 
 
The best way to learn more about these fractals is to explore them in the program which 
provides a simple to use graphic interface. Generally, quaternion fractals have round shapes 
and hypercomplex (Davenport) fractals have a typical box appearance. 
 
Implemented fractals (all are described in section 3.4.): 

• Mandelbrot (including the variable exponent version) 
• Julia (including the variable exponent version) 
• Barnsley (Mandelbrot and Julia) 
• Lambda (Mandelbrot and Julia) 
• ManOWar (Mandelbrot and Julia) 
• Newton 
• Phoenix 
• Sierpiński 
• Spider 
• Breeder (Mandelbrot and Julia) 

 
Additionally, various procedural textures can be used for coloring generated isosurfaces. This 
includes techniques such as bump-mapping and displacement mapping (not involving 
OpenGL). 
 
For advanced lighting, coloring, and vertex transformations GLSL shaders were added. They 
work as a replacement for the fixed functionality inside the graphic card’s GPU so the 
possibilities are endless. 
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6.2. Box/Cube-counting Dimensions 
 
We have described how to calculate the box/cube-counting dimension in section 3.6.2. 
 
The program “QuadFractal” was used to calculate the following dimensions of a few 
approximations of hypercomplex fractals and their subsets such as complex numbers. 
 
The numbers of sub-cubes represents the number of cubes in a grid refinement. 
 
6.2.1. Mandelbrot Set 
 
 
 

Complex Mandelbrot set - 10 iterations, sub-boxes: 42 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 89 2.3025851 4.4886364 1.2037467 
0.0500000 205 2.9957323 5.3230100 1.0853915 
0.0250000 435 3.6888795 6.0753460 1.0695995 
0.0125000 913 4.3820266 6.8167359 1.0351228 
0.0062500 1871 5.0751738 7.5342283 1.0237077 
0.0031250 3804 5.7683210 8.2438084 1.0355869 
0.0015625 7798 6.4614682 8.9616226 0.9808172 

0.0007813 15390 7.1546154 9.6414732   

Arithmetic Mean: 1.0619960 
 
 
 

Complex Mandelbrot set - 100 iterations, sub-boxes: 42 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 82 2.3025851 4.4067192 1.2644998 
0.0500000 197 2.9957323 5.2832037 1.3027607 
0.0250000 486 3.6888795 6.1862086 1.4523980 
0.0125000 1330 4.3820266 7.1929342 1.5364269 
0.0062500 3858 5.0751738 8.2579042 1.6723813 
0.0031250 12297 5.7683210 9.4171106 1.6990221 
0.0015625 39926 6.4614682 10.5947830 1.7032665 

0.0007813 130014 7.1546154 11.7753974   

Arithmetic Mean: 1.5186794 
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Complex Mandelbrot set - 666 iterations, sub-boxes: 42 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 80 2.3025851 4.3820266 1.2249664 
0.0500000 187 2.9957323 5.2311086 1.1776194 
0.0250000 423 3.6888795 6.0473722 1.2180007 
0.0125000 984 4.3820266 6.8916259 1.2988729 
0.0062500 2421 5.0751738 7.7919360 1.3615434 
0.0031250 6221 5.7683210 8.7356859 1.4618962 
0.0015625 17137 6.4614682 9.7489951 1.5625074 

0.0007813 50617 7.1546154 10.8320428   

Arithmetic Mean: 1.3293438 
 
 
As we can see, the calculated dimensions are not quite what we would expect since we know 
that the Hausdorff dimension of the complex Mandelbrot set is equal to 2, but we can observe 
some characteristics. For a very small number of iterations (typical of hypercomplex 
visualizations), the fractal set is more similar to a regular object so the dimension is closer to 
1. As we increase the number of iterations, the dimension increases. However, at some point, 
it decreases again. This is caused by the constant number of sub-boxes that we chose for all 
three tables. As the number of iterations increases, we have to increase the grid refinement. 
Note that the definition of the box-counting dimension does not cover this problem. It 
assumes that all boxes covering a fractal set are exactly identified. Let us see what happens if 
we increase the number of sub-boxes. 
 
 

Complex Mandelbrot set - 666 iterations, sub-boxes: 82 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 94 2.3025851 4.5432948 1.1936040 
0.0500000 215 2.9957323 5.3706380 1.2602358 
0.0250000 515 3.6888795 6.2441669 1.2919239 
0.0125000 1261 4.3820266 7.1396603 1.3471059 
0.0062500 3208 5.0751738 8.0734030 1.3690017 
0.0031250 8286 5.7683210 9.0223226 1.4803313 
0.0015625 23119 6.4614682 10.0484101 1.5865841 

0.0007813 69435 7.1546154 11.1481463   

Arithmetic Mean: 1.3612552 
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DB of Complex Mandelbrot Set

1

3

5

7

9

11

13

1 3 5 7 9

ln(1/r)

ln(N(r))
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100 iterations

666 iterations

666 iterations (finer)

 
 
 
Indeed, the dimension increased, but only slightly. This leads to the conclusion that much 
more precise results can be achieved by greatly increasing the grid refinement. Unfortunately, 
this is a great disadvantage of the box-counting dimension, because it means that the 
calculated dimension converges to the exact box-counting dimension very slowly. Of course, 
we cannot be sure that the dimension will converge to some larger number from the tables 
above. However, in the case of the complex Mandelbrot set, we can. We know that the 
Hausdorff dimension 

H
D  of the set is equal to 2, and we also know that 

H B B
D D D≤ ≤ , 

where 
B

D  exists if 
B B B

D D D= = . The topological dimension of the set is equal to 1, so 
B

D  

can be 2 at the most. This leaves only one option: 2
B

D = , or, it does not exist, which would 

be unfortunate. 
 
Note that many of these calculations take minutes or hours to complete, so some finer grids 
were skipped in the following tables. 
 
 

Quaternion Mandelbrot set - 100 iterations, sub-cubes: 44 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 14920 2.3025851 9.6104579 3.3607182 
0.0500000 153266 2.9957323 11.9399303 3.5197450 

0.0250000 1757902 3.6888795 14.3796316   

Arithmetic Mean: 3.4402316 
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3D subset of hypercomplex Mandelbrot set - 100 iterations, sub-
cubes: 43 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 910 2.3025851 6.8134446 2.2550857 
0.0500000 4344 2.9957323 8.3765509 2.3808855 
0.0250000 22626 3.6888795 10.0268550 2.3965923 

0.0125000 119139 4.3820266 11.6880462   

Arithmetic Mean: 2.3441878 
 
 
Hausdorff dimensions of hypercomplex Mandelbrot sets are unknown up to now. 
 
 
6.2.2. Sierpiński Triangle and Pyramid 
 

Sierpinki triangle - 10 iterations, sub-boxes: 82 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.0100000 2259 4.6051702 7.7226775 1.58496250072116 

0.0050000 6777 5.2983174 8.8212898   
 
The dimension of Sierpiński triangle was calculated exactly, because: 
 

 

6777
ln ln 32259 .

0.01 ln 2ln
0.005

B H
D D= = =  (6.1) 

 

Let us try the same parameters for Sierpiński pyramid: 
 

Sierpinki pyramid - 10 iterations, sub-cubes: 83 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.2000000 28 1.6094379 3.3322045 2.0913183 
0.0100000 14724 4.6051702 9.5972341 2.2947081 

0.0050000 72244 5.2983174 11.1878046   
 

We know that 
ln 4

2
ln 2H

D = =  because there are 4 new half-sized pyramids in each pyramid. 

Obviously, the calculation was not so exact this time. After an infinite number of iterations, 
the fractal becomes a network of lines whose topological dimension is 1. This is the reason 
why we have to choose parameters for calculations very carefully. Too high number of 
iterations causes the algorithm to fail in finding the fractal set because it cannot find any 
convergent points by systematic testing of the points in a grid. 
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6.2.3. Exponential Julia Set 
 

3D subset of quaternion Julia set zn+1=zn
5 + 0.7 + 0.8i: 

100 iterations, sub-cubes: 43 

r N(r) ln(1/r) ln(N(r)) DB between 2 points 

0.1000000 2110 2.3025851 7.6544432 2.3634435 
0.0500000 10858 2.9957323 9.2926574 2.3760412 
0.0250000 56365 3.6888795 10.9396037 2.3722518 

0.0125000 291829 4.3820266 12.5839233   

Arithmetic Mean: 2.3705788 
 
Not much has been known about dimensions of exponential Julia sets, but it can be observed 
that by increasing the exponent of 

n
z , the fractal becomes more complex. This means that the 

refinement grid would have to be much more precise to get a reasonably accurate result. This 
is no problem in theory, but it takes a lot of computation time in practice. 
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7. Conclusion 
 
We have developed basic mathematical principles and functions in hypercomplex spaces, 
applied these functions to escape-time fractal sets, and used these fractals to generate various 
visualizations and calculate dimensions. 
 
Although the developed application is intended only for WindowsTM based systems, it 
provides an extensive environment capable of visualizing approximations of subsets of 
hypercomplex fractals in a user friendly way, without the need to learn a script language. The 
disadvantage of such an implementation is a limited support of fractal formulas, that is, only 
hard-coded fractals are available. The advantage is the increased performance of such an 
approach, avoiding dynamic compilations. 
 
Another advantage is that the application can generate 3D fractal models, and export them to 
various 3D file formats. Formats X3D and VRML97 are standardized formats for web 
deployment. Although they are often a few MiB big, they provide the best way to deploy 3D 
models for web since they are text formats similar to XML (X3D is XML). There is a way to 
load exported models in a different application without any support for parsing of 3D formats, 
because my application can produce a C/C++ header file with all necessary data and functions 
ready to use in OpenGL. The ability to import 3ds and Zipper (Stanford) models provides a 
way to convert 3D files. 
 
From my point of view, the visualization using the Marching Cubes algorithm is more 
beneficial than Ray-tracing which cannot produce 3D models and is not supported by 
hardware. 
 
The implemented dimension calculator is sometimes useful, and, sometimes, it produces 
inconclusive results due to limited computation time. 
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