Sample Quiz 10, Problem 1. Vertical Motion Seismoscope

The 1875 **horizontal motion seismoscope** of F. Cecchi (1822-1887) reacted to an earthquake. It started a clock, and then it started motion of a recording surface, which ran at a speed of 1 cm per second for 20 seconds. The clock provided the observer with the earthquake hit time.

A Simplistic Vertical Motion Seismoscope

The apparently stationary heavy mass on a spring writes with the attached stylus onto a rotating drum, as the ground moves up. The generated trace is x(t).

The motion of the heavy mass m in the figure can be modeled initially by a forced spring-mass system with damping. The initial model has the form

$$mx'' + cx' + kx = f(t)$$

where f(t) is the vertical ground force due to the earthquake. In terms of the vertical ground motion u(t), we write via Newton's second law the force equation f(t) = -mu''(t) (compare to falling body -mg). The final model for the motion of the mass is then

1)
$$\begin{cases} x''(t) + 2\beta\Omega_0 x'(t) + \Omega_0^2 x(t) = -u''(t), \\ \frac{c}{m} = 2\beta\Omega_0, \quad \frac{k}{m} = \Omega_0^2, \\ x(t) = \text{center of mass position measured from equilibrium,} \\ u(t) = \text{vertical ground motion due to the earthquake.} \end{cases}$$

Terms **seismoscope**, **seismograph**, **seismometer** refer to the device in the figure. Some observations:

Slow ground movement means $x' \approx 0$ and $x'' \approx 0$, then (1) implies $\Omega_0^2 x(t) = -u''(t)$. The seismometer records ground acceleration.

Fast ground movement means $x \approx 0$ and $x' \approx 0$, then (1) implies x''(t) = -u''(t). The seismometer records ground displacement.

A release test begins by starting a vibration with u identically zero. Two successive maxima $(t_1, x_1), (t_2, x_2)$ are recorded. This experiment determines constants β, Ω_0 .

The objective of (1) is to determine u(t), by knowing x(t) from the seismograph.

The Problem.

(

(a) Explain how a release test can find values for β , Ω_0 in the model $x'' + 2\beta \Omega_0 x' + \Omega_0^2 x = 0$.

(b) Assume the seismograph trace can be modeled at time t = 0 (a time after the earthquake struck) by $x(t) = Ce^{-at}\sin(bt)$ for some positive constants C, a, b. Assume a release test determined $\beta = 6$ and $\Omega_0 = 10$. Explain how to find a formula for the ground motion u(t), then provide a formula for u(t), using technology.

Solution.

(a) A release test is an experiment which provides initial data x(0) > 0, x'(0) = 0 to the seismoscope mass. The model is $x'' + 2\beta\Omega_0 x' + \Omega_0^2 x = 0$ (ground motion zero). The recorder graphs x(t) during the experiment, until two successive maxima $(t_1, x_1), (t_2, x_2)$ appear in the graph. This is enough information to find values for β, Ω_0 .

In an under-damped oscillation, the characteristic equation is $(r+p)^2 + \omega^2 = 0$ corresponding to complex conjugate roots $-p \pm \omega i$. The phase-amplitude form is $x(t) = Ce^{-pt} \cos(\omega t - \alpha)$, with period $2\pi/\omega$.

The equation $x'' + 2\beta\Omega_0 x' + \Omega_0^2 x = 0$ has characteristic equation $(r + \beta)^2 + \Omega_0^2 = 0$. Therefore $x(t) = Ce^{-\beta t}\cos(\Omega_0 t - \alpha)$.

The period is $t_2 - t_1 = 2\pi/\Omega_0$. Therefore, Ω_0 is known. The maxima occur when the cosine factor is 1, therefore

$$\frac{x_2}{x_1} = \frac{Ce^{-\beta t_2} \cdot 1}{Ce^{-\beta t_1} \cdot 1} = e^{-\beta(t_2 - t_1)}.$$

This equation determines β .

(b) The equation $-u''(t) = x''(t) + 2\beta\Omega_0 x'(t) + \Omega_0^2 x(t)$ (the model written backwards) determines u(t) in terms of x(t). If x(t) is known, then this is a quadrature equation for the ground motion u(t).

For the example $x(t) = Ce^{-at}\sin(bt)$, $\beta = 6, \Omega_0 = 10$, the quadrature equation is

$$-u''(t) = x''(t) + 12x'(t) + 100x(t).$$

After substitution of x(t), the equation becomes

$$-u''(t) = Ce^{-at} \left(\sin(bt) a^2 - \sin(bt) b^2 - 2\cos(bt) ab - 12\sin(bt) a + 12\cos(bt) b + 100\sin(bt) \right)$$

which can be integrated twice using Maple, for simplicity. All integration constants will be assumed zero. The answer:

$$u(t) = \frac{Ce^{-at} (12 a^{2}b + 12 b^{3} - 200 ab) \cos(bt)}{(a^{2} + b^{2})^{2}} - \frac{Ce^{-at} (a^{4} + 2 a^{2}b^{2} + b^{4} - 12 a^{3} - 12 ab^{2} + 100 a^{2} - 100 b^{2}) \sin(bt)}{(a^{2} + b^{2})^{2}}$$

The Maple session has this brief input:

de:=-diff(u(t),t,t) = diff(x(t),t,t) + 12*diff(x(t),t) + 100* x(t); x:=t->C*exp(-a*t)*sin(b*t); dsolve(de,u(t));subs(_C1=0,_C2=0,%);