
Quiz 13

Problem 1.

Flow through each pipe is f gallons per unit time.

Each tank has constant volume V .

Symbols x1(t) to x5(t) are the salt amounts in tanks
T1 to T5, respectively.

The differential equations are obtained by the classical balance law, which says that the rate of
change in salt amount is the rate in minus the rate out. Individual rates in/out are of the form
(flow rate)(salt concentration), where flow rate f has units volume per unit time and xi(t)/V is
the concentration = amount/volume.

x′1(t) = f
V (x2(t) + x3(t) + x4(t) + x5(t)− 4x1(t))

x′2(t) = f
V (x1(t)− x2(t)) ,

x′3(t) = f
V (x1(t)− x3(t)) ,

x′4(t) = f
V (x1(t)− x4(t)) ,

x′5(t) = f
V (x1(t)− x5(t)) .

Problem 1(a). Change variables t = V r/f to obtain the new system

dx1
dr

= x2 + x3 + x4 + x5 − 4x1

dx2
dr

= x1 − x2,

dx3
dr

= x1 − x3,

dx4
dr

= x1 − x4,

dx5
dr

= x1 − x5.

Solution 1(a):

Because
dx(t)

dt
=
dx

dr

dr

dt
=
dx

dr

f

V
, then the fraction f/V cancels in the equations, resulting in the

new system.
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Problem 1(b). Formulate the equations in 1(a) in the system form
d

dr
~u = A~u.

Answer:

A =


−4 1 1 1 1

1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

 , ~u =


x1
x2
x3
x4
x5



Problem 1(c). Find the eigenvalues of A.

Answer: λ = 0,−1,−1,−1,−5

Solution 1(c).

Let D = |A− λI|. Replace −1− λ by symbol u. Then

D =

∣∣∣∣∣∣∣∣∣∣∣

−3 + u 1 1 1 1
1 u 0 0 0
1 0 u 0 0
1 0 0 u 0
1 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣
Add each of rows 2, 3, 4 to row 1. Then 1 + u is a common factor of row 1 and the determinant
multiply rule implies

D = (1 + u)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
1 u 0 0 0
1 0 u 0 0
1 0 0 u 0
1 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣
Cofactor expansion along the last row, plus induction, gives the answer D = (u + 1)(u− 4)u3 =
(−λ)(−λ− 5)(−λ− 1)3 with roots λ = 0,−5,−1,−1,−1.

Problem 1(d). Find the eigenvectors of A.

Solution 1(d).

The root λ = −1 causes us to solve (A+ I)~v = ~0, which has coefficient matrix

B =


−3 1 1 1 1

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 , with rref(B) =


1 0 0 0 0
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

There are 2 lead variables and 3 free variables, hence 3 basis vectors
0
−1

1
0
0

 ,


0
−1

0
1
0

 ,


0
−1

0
0
1

 .

The eigenvector for λ = 0 has all components equal to 1. This fact is found from the equation
(A− (0)I)~v = ~0, which has coefficient matrix A.
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The eigenvector for λ = −5 has first component −4 and the remaining equal to 1. The task begins
with the equation (A− (−5)I)~v = ~0, which has coefficient matrix

5− 4 1 1 1 1
1 5− 1 0 0 0
1 0 5− 1 0 0
1 0 0 5− 1 0
1 0 0 0 5− 1

 =


1 1 1 1 1
1 4 0 0 0
1 0 4 0 0
1 0 0 4 0
1 0 0 0 4


The eigenvectors for λ = 0 and λ = −5 are respectively

1
1
1
1
1

 ,

−4

1
1
1
1

 .

Problem 1(e). Solve the differential equation
d~u

dr
= A~u by the eigenanalysis method.

Three Methods for Solving d
dt~u(t) = A~u(t)

• Eigenanalysis Method. The eigenpairs of matrix A are required. The matrix A must
be diagonalizable, meaning there are n eigenpairs (λ1, ~v1), (λ2, ~v2), . . . , (λn, ~vn). The main
theorem says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + · · ·+ cne
λnt~vn.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination
of the Euler solution atoms f1, . . . , fn found from the roots of the characteristic equation
|A− λI| = 0. The vectors ~d1, . . . , ~dn in the linear combination

~u(t) = f1(t)~d1 + f2(t)~u2 + · · ·+ fn(t)~dn

are determined by the explicit formula

< ~d1 | ~d2 | · · · | ~dn >=< ~u0 |A~u0 | · · · |An−1~u0 >
(
W (0)T

)−1
,

where W (t) is the Wronskian matrix of atoms f1, . . . , fn and ~u0 is the initial data.

Solution 1(e).

The eigenvectors corresponding to λ = 0,−5,−1,−1,−1 are respectively
1
1
1
1
1

 ,

−4

1
1
1
1

 ,


0
−1

1
0
0

 ,


0
−1

0
1
0

 ,


0
−1

0
0
1

 .

The Eigenanalysis method then implies the solution ~x(r) of
d~x

dr
= A~x is given for arbitrary

constants c1, . . . , c5 by the expression

c1e
0r


1
1
1
1
1

+ c2e
−5r


−4

1
1
1
1

+ c3e
−r


0
−1

1
0
0

+ c4e
−r


0
−1

0
1
0

+ c5e
−r


0
−1

0
0
1

 .
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Problem 2. Home Heating

Consider a typical home with attic, basement and insulated main floor.

Heating Assumptions and Variables

• It is usual to surround the main living area with insulation, but the attic area has walls and
ceiling without insulation.

• The walls and floor in the basement are insulated by earth.

• The basement ceiling is insulated by air space in the joists, a layer of flooring on the main
floor and a layer of drywall in the basement.

The changing temperatures in the three levels is modeled by Newton’s cooling law and the variables

z(t) = Temperature in the attic,
y(t) = Temperature in the main living area,
x(t) = Temperature in the basement,
t = Time in hours.

A typical mathematical model is the set of equations

x′ =
3

4
(45− x) +

1

4
(y − x),

y′ =
1

4
(x− y) +

1

4
(40− y) +

1

2
(z − y) + 20,

z′ =
1

2
(y − z) +

1

2
(35− z).

Problem 2(a). Formulate the system of differential equations as a matrix system d
dt~u(t) =

A~u(t) +~b. Show details.

Answer. ~u =

 x(t)
y(t)
z(t)

 , ~b =


3
4(45)

20 + 40
4

35
2

 , A =


−1 1

4 0

1
4 −1 1

2

0 1
2 −1


Solution Details.

Expand the right side of the system as follows.

x′ =
3

4
45− 3x

4
+
y

4
− x

4
,

y′ =
x

4
− y

4
+

40

4
− y

4
+
z

2
− y

2
+ 20

z′ =
y

2
− z

2
+

35

2
− z

2
.
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Then collect on the variables:

x′ = −x+
y

4
+

3

4
(45),

y′ =
x

4
− y +

z

2
+ 20 + 10

z′ =
y

2
− z +

35

2
.

The right side of this system can be written as A~u +~b. Vector ~b is obtained by formally setting
x = y = z = 0 on the right. This justifies the answer given.

The matrix A has columns equal to the partial derivatives ∂x, ∂y, ∂z of the right side of the scalar
system. This idea is important, because it allows the computation of matrix A without any of
the preceding details.

Problem 2(b). The heating problem has an equilibrium solution ~up(t) which is a constant
vector of temperatures for the three floors. It is formally found by setting d

dt~u(t) = 0, and then

~up = −A−1~b. Justify the algebra and explicitly find ~up(t).

Answer 2(b). ~up(t) = −A−1~b =


560
11

755
11

570
11

 =

 50.91
68.64
51.82

.

Solution Details.

The equation upon setting the derivative equal to zero becomes ~0 = A~u+~b which implies A~u = −~b
and finally ~u = A−1~b.

The calculation is done by technology. The maple code:

A:=<-1,1/4,0|1/4,-1,1/2|0,1/4,-1>^+; b:=<3*45/4,20+10,35/2>;

-A^(-1).b; evalf(%);

The solution can also be obtained by hand from the augmented matrix of A and −~b, using the
linear algebra toolkit of swap, combination and multiply.

Problem 2(c). The homogeneous problem is d
dt~u(t) = A~u(t). It can be solved by a variety of

methods, three major methods enumerated below. Choose a method and solve for ~x(t).

Answer 2(c): The homogenous scalar general solution is

x1(t) = −1

2
c1e
−t + 2c2e

−at + 2c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + c2e

−at + c3e
−bt.

Three Methods for Solving ~u′ = A~u

• Eigenanalysis Method. Three eigenpairs of matrix A are required. The matrix A must be
diagonalizable, meaning there are 3 eigenpairs (λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The main theorem
says that the general solution of ~u′ = A~u is

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

• Laplace’s Method. Solve the scalar equations by the Laplace transform method. The
resolvent method automates this process: ~u(t) = L−1

(
(sI −A)−1

)
~u(0).

• Cayley-Hamilton-Ziebur Method. The solution ~u(t) is a vector linear combination of
the Euler solution atoms found from the roots of the characteristic equation |A − λI| = 0.
The vectors in the linear combination are determined by an explicit formula.
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Solution Details for Problem 2(c)

.

The roots of the characteristic polynomial are used in all three methods. This is the polynomial
equation |A− λI| = 0, having n roots real and complex, for an n× n matrix A.

Subtract λ from the diagonal of A and form the determinant. Then cofactor expansion on row 3
gives

|A− λI| =

∣∣∣∣∣∣∣∣∣
−1− λ 1

4 0

1
4 −1− λ 1

2

0 1
2 −1− λ

∣∣∣∣∣∣∣∣∣ = (−1− λ)

(
−1

4
+ (−1− λ)2 − 1

16

)
.

The roots are −1,−a,−b where a = 1 +
√

5/4 = 1.56, b = 1 −
√

5/4 = 0.44. The three roots are
distinct, real and negative.

Eigenanalysis Method

The eigenpairs must be found, in order to assemble the solution vector ~u(t). Technology can be
used to find the answers, which are−1,

−2
0
1


 ,

−a,
 1

−
√

5
2


 ,

−b,
 1√

5
2


 .

Without technology, there are three homogeneous problems to solve of the form B~v = ~0, for
eigenvector ~v. Enumerated, they are:

Case λ = −1. Then B = A+ I =


0 1

4 0

1
4 0 1

2

0 1
2 0



Case λ = −a. Then B = A+ aI =


√
5
4

1
4 0

1
4

√
5
4

1
2

0 1
2

√
5
4



Case λ = −b. Then B = A+ bI =


−
√
5
4

1
4 0

1
4 −

√
5
4

1
2

0 1
2 −

√
5
4


In each case, the system B~v = ~0 is solved using the last frame algorithm (there is in each case
one free variable). The eigenvector reported is the partial derivative of the general solution on
the invented symbol t1, which was assigned to the free variable.

Application of the Theorem

System ~u′ = A~u is solved in the diagonalizable case in terms of the eigenpairs of A, denoted as
(λ1, ~v1), (λ2, ~v2), (λ3, ~v3). The solution of ~u′ = A~u is given by the formula

~u(t) = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3.

In the present case, the solution is

~u(t) = c1e
−t

−2
0
1

+ c2e
−at

 1

−
√

5
2

+ c3e
−bt

 1√
5
2

 .
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Symbols c1, c2, c3 in the solution are arbitrary constants, uniquely determined by initial conditions.
In scalar form, the solution is

x1(t) = −2c1e
−t + c2e

−at + c3e
−bt,

x2(t) = −
√

5c2e
−at +

√
5c3e

−bt,

x3(t) = c1e
−t + 2c2e

−at + 2c3e
−bt.

Laplace Transform Method

The Laplace Method for solving ~u′(t) = A~u(t) is based upon transforming all differential
equations into the frequency domain. Then time variable t no longer appears, being replaced
by the frequency variable s.

The homogeneous system of differential equations is

x′ = −x+
y

4
,

y′ =
x

4
− y +

z

2

z′ =
y

2
− z.

Transforming to the s-domain uses the parts rule L(f ′(t)) = sL(f(t)− f(0). Then

sL(x)− x(0) = −L(x) +
1

4
L(y),

sL(y)− y(0) =
1

4
L(x)− L(y) +

1

2
L(z)

sL(z)− z(0) =
1

2
L(y)− L(z).

View these equations as linear algebraic equations for the symbols L(x),L(y),L(z). Move terms
left and right to re-write the scalar equations as a matrix system s+ 1 −1

4 0
1
4 s+ 1 −1

2
0 −1

2 s+ 1


 L(x)

L(y)

L(z)

 =

 x(0)
y(0)
z(0)

 .
The system is solved by inverting the coefficient matrix C on the left, using the adjugate formula
C−1 = adj(C)/|C|.

The Resolvent Method

The scalar system solved above is exactly

(sI −A)L(~u(t)) = ~u(0), I =

1 0 0
0 1 0
0 0 1

 , A =

−1 1
4 0

1
4 −1 1

2
0 1

2 −1

 , ~u(t) =

x(t)
y(t)
z(t)

 .
The system (sI − A)L(~u(t)) = ~u(0) is called the resolvent equation. The inverse of the
coefficient matrix, (sI−A)−1, is called the resolvent matrix, because L(~u(t)) = (sI−A)−1~u(0).
There are two ways to find the inverse Laplace transform of C = (sI − A)−1~u(0). Here is an
illustration for Waterloo Maple.

u0:=<c1,c2,c3>:

map(inttrans[invlaplace],C^(-1) . u0,s,t);

# Or an alternative, not using Laplace theory

LinearAlgebra[MatrixExponential](A1,t) . u0;
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While this method produces the correct answer, it is in an uncomfortable form:
1/5 e−t

(
4 c1 + c2

√
5 sinh

(
1/4 t

√
5
)
− 2 c3 + cosh

(
1/4 t

√
5
)

(c1 + 2 c3 )
)

1/5 e−t
(
5 c2 cosh

(
1/4 t

√
5
)

+ sinh
(
1/4 t

√
5
)√

5 (c1 + 2 c3 )
)

1/5 e−t
(
−2 c1 + 2 c2

√
5 sinh

(
1/4 t

√
5
)

+ c3 + 2 cosh
(
1/4 t

√
5
)

(c1 + 2 c3 )
)


Cayley-Hamilton-Ziebur Method

The Ziebur Lemma implies that the solution of the system ~u′(t) = A~u(t) is given by the formula

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt.

THEOREM. Vectors ~d1, ~d2, ~d3 are uniquely determined by initial condition ~u(0), which is a
column vector of prescribed constants, by the matrix equation.

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1
Symbol W (t) is the Wronskian matrix of the three Euler solution atoms. Notation 〈 ~A| ~B|~C〉 is
the augmented matrix of the three columns vectors ~A, ~B, ~C.

Illustration. For the heating example, with a = 1 +
√

5/4 = 1.56, b = 1−
√

5/4 = 0.44, the
Euler solution atoms are e−t, e−at, e−bt. The Wronskian matrix is

W (t) =

 e−t e−at e−bt

−e−t −ae−at −be−bt
e−t a2e−at b2e−bt

 , W (0) =

 1 1 1
−1 −a −b

1 a2 b2

 .

Then (W (0)T )−1 =


−11

5
8
5 −

2
5

√
5 8

5 + 2
5

√
5

−32
5

16
5 −

2
5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5

 .

For initial state ~u(0) =

1
0
0

, 〈~u(0)|A~u(0)|A2~u(0)〉 =


1 −1 17

16

0 1
4 −1

2

0 0 1
8

. Then

~u(t) = 〈~d1|~d2|~d3〉

 e−t

e−at

e−bt

 =


1 −1 17

16

0 1
4 −1

2

0 0 1
8



−11

5
8
5 −

2
5

√
5 8

5 + 2
5

√
5

−32
5

16
5 −

2
5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5


 e−t

e−at

e−bt



For general initial state ~u(0) =

c1c2
c3

,

〈~u(0)|A~u(0)|A2~u(0)〉 =


c1 −c1 + 1

4c2
17
16 c1 −

1
2c2 + 1

8c3

c2
1
4c1 − c2 + 1

2c3 −1
2c1 + 21

16c2 − c3
c3

1
2c2 − c3

1
8c1 − c2 + 5

4c3

 .
Then ~u(t) is this matrix times

(
W (0)T

)−1
times the column vector of atoms e−t, e−at, e−bt:

~u(t) =


c1 −c1 + 1

4c2
17
16 c1 −

1
2c2 + 1

8c3

c2
1
4c1 − c2 + 1

2c3 −1
2c1 + 21

16c2 − c3
c3

1
2c2 − c3

1
8c1 − c2 + 5

4c3



−11

5
8
5 −

2
5

√
5 8

5 + 2
5

√
5

−32
5

16
5 −

2
5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5


 e−t

e−at

e−bt
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Details for the Theorem

The idea for finding the three vectors is differentiation of Ziebur’s equation, two times, to get
three equations

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

~u′(t) = −~d1e−t − a~d2e
−at − b~d3e

−bt,

~u′′(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

Identities ~u′(t) = A~u(t) and ~u′′(t) = A~u′(t) = AA~u(t) imply that the left sides are simplified to

~u(t) = ~d1e
−t + ~d2e

−at + ~d3e
−bt,

A~u(t) = −~d1e−t − a~d2e
−at − b~d3e

−bt,

A2~u(t) = ~d1e
−t + a2~d2e

−at + b2~d3e
−bt.

The critical idea is to substitute t = 0, which because of e0 = 1 gives the following three equations
for unknowns ~d1, ~d2, ~d3:

~u(0) = ~d1 + ~d2 + ~d3,

A~u(0) = −~d1 − a~d2 − b~d3,

A2~u(0) = ~d1 + a2~d2 + b2~d3.

How to solve these vector equations for unknowns ~d1, ~d2, ~d3? To begin, solve the scalar system 1 1 1
−1 −a −b

1 a2 b2


 x
y
z

 =

 b1
b2
b3


where variables x, y, z are the first components of ~d1, ~d2, ~d3, and similarly, b1, b2, b3 are the first
components of vector ~u(0), A~u(0), A2~u(0):

x = ~d1 · ~v,

y = ~d2 · ~v,

z = ~d3 · ~v,

b1 = ~u(0) · ~v,
b2 = A~u(0) · ~v,
b3 = A2~u(0) · ~v,

~v =

1
0
0

.

The equations also apply to find the second components, using ~v =

0
1
0

, then the third com-

ponents using ~v =

0
0
1

. The three systems of equations can be written as one huge matrix

equation:  1 1 1
−1 −a −b

1 a2 b2

 〈~d1|~d2|~d3〉T = 〈~u(0)|A~u(0)|A2~u(0)〉T

Taking the transpose across the equation gives

〈~d1|~d2|~d3〉

 1 1 1
−1 −a −b

1 a2 b2


T

= 〈~u(0)|A~u(0)|A2~u(0)〉

Finally, invert the matrix W (0)T and multiply across the equation on the right to obtain

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉


 1 1 1
−1 −a −b

1 a2 b2


T
−1

This is exactly the equation reported in the theorem,

〈~d1|~d2|~d3〉 = 〈~u(0)|A~u(0)|A2~u(0)〉
(
W (0)T

)−1
9



It has been observed that if f1 = e−t, f2 = e−at, f3 = e−bt are replaced by a new basis of solutions
such that W (0) = I, then ~d1 = ~u(0), ~d2 = A~u(0), ~d3 = A2~u(0). The resulting solution in this case
is

~u(t) = f1(t)~u(0) + f2(t)A~u(0) + f3(t)A
2~u(0).

In the example,

 f1(t)
f2(t)
f3(t)

 =


−11

5
8
5 −

2
5

√
5 8

5 + 2
5

√
5

−32
5

16
5 −

2
5

√
5 16

5 + 2
5

√
5

−16
5

8
5

8
5


 e−t

e−at

e−bt


is the special basis with Wronskian equal to 1 at t = 0.
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