\qquad

Differential Equations 2280

Sample Midterm Exam 1
Exam Date: Friday, 27 February 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$. The first 5 problems are from a midterm exam in 2009, solutions appended to this PDF. The last two problems have solutions immediately after the problem statement.

1. (Quadrature Equations)

(a) $[25 \%]$ Solve $y^{\prime}=\frac{3+x^{2}}{1+x^{2}}$.
(b) $[25 \%]$ Solve $y^{\prime}=(2 \sin x+\cos x)(\sin x-2 \cos x)$.
(c) $[25 \%]$ Solve $y^{\prime}=\frac{x \tan \left(\ln \left(1+x^{2}\right)\right)}{1+x^{2}}, y(0)=2$.
(d) $[25 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(t^{2} v(t)\right)=0, v(2)=10$ and the position model $\frac{d x}{d t}=v(t), x(2)=-20$.
[Integral tables will be supplied for anything other than basic formulas. This sample problem would require no integral table. The exam problem will be shorter.]

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[40 \%]$ Check (X) the problems that can be put into separable form. No details expected.

\square	$y^{\prime}+x y=y\left(2 x+e^{x}\right)+x^{2} y$	\square	$y^{\prime}=(x-1)(y+1)+(1-x) y$
\square	$y^{\prime}=2 e^{2 x-y} e^{3 y}+3 e^{3 x+2 y}$	\square	$y^{\prime}+x^{2} e^{y}=x y$

(b) $[10 \%]$ Is $y^{\prime}+x(y+1)=y e^{x}+x$ separable? No details expected.
(c) $[10 \%]$ Give an example of $y^{\prime}=f(x, y)$ which is separable and linear but not quadrature. No details expected.
(d) [40\%] Apply tests to show that $y^{\prime}=x+e^{y}$ is not separable and not linear. Supply all details.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

3. (Solve a Separable Equation)

Given $(x+3)(y+1) y^{\prime}=\left((x+3) e^{-x+2}+3 x^{2}+2\right)(y-1)(y+2)$.
Find a non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $5 x^{\prime}(t)=-160+\frac{25}{2 t+3} x(t), x(0)=32$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-(2 x) y=0$.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}+10 y=7$ using the superposition principle $y=y_{h}+y_{p}$. Expected are answers for y_{h} and y_{p}.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

5. (Stability)

(a) [50\%] Draw a phase line diagram for the differential equation

$$
\frac{d x}{d t}=\left(\ln \left(1+5 x^{2}\right)\right)^{1 / 5}(|2 x-1|-3)^{3}(2+x)^{2}\left(4-x^{2}\right)\left(1-x^{2}\right)^{3} e^{\cos x} .
$$

Expected in the phase line diagram are equilibrium points and signs of $d x / d t$.
(b) [50\%] Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad
6. (ch3)

Using Euler's theorem on atoms and the characteristic equation for higher order constantcoefficient differential equations, solve (a), (b), (c) and (d).
(a) $[25 \%]$ Find a differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ with solutions $2 e^{-x}, e^{-x}-e^{2 x / 3}$.
(b) $[25 \%]$ Solve $y^{(6)}+4 y^{(5)}+4 y^{(4)}=0$.
(c) [25\%] Given characteristic equation $r(r+2)\left(r^{3}-4 r\right)^{3}\left(r^{2}+2 r+5\right)=0$, solve the differential equation.
(d) [25\%] Given $4 x^{\prime \prime}(t)+4 x^{\prime}(t)+65 x(t)=0$, which represents an unforced damped springmass system with $m=4, c=4, k=65$. Solve the differential equation [15\%]. Classify the answer as over-damped, critically damped or under-damped [5\%]. Illustrate in a drawing of the physical model the meaning of constants $m, c, k[5 \%]$.

Solution to Problem 6.

6(a)

Divide the first solution by 2. Then Euler atom e^{-x} is a solution, which implies that $r=-1$ is a root of the characteristic equation. Subtract $y_{1}=e^{-x}$ and $y_{2}=e^{-x}-e^{2 x / 3}$ to justify that $y=y_{1}-y_{2}=e^{2 x / 3}$ is a solution. It is an Euler atom corresponding to root $r=2 / 3$. Then the characteristic equation should be $(r-(-1))(r-2 / 3)=0$, or $3 r^{2}+r-2=0$. The differential equation is $3 y^{\prime \prime}+y^{\prime}-2 y=0$.
6(b)
The characteristic equation factors into $r^{4}\left(r^{2}+4 r+4\right)=0$ with roots $r=0,0,0,0,-2,-2$. Then y is a linear combination of the Euler atoms $1, x, x^{2}, x^{3}, e^{-2 x}, x e^{-2 x}$.
6(c)
The roots of the fully factored equation $r^{4}(r+2)^{4}(r-2)^{3}\left((r+1)^{2}+4\right)=0$ are

$$
r=0,0,0,0,-2,-2,-2,-2,2,2,2,-1 \pm 2 i .
$$

The solution y is a linear combination of the Euler atoms

$$
1, x, x^{2}, x^{3} ; \quad e^{-2 x}, x e^{-2 x}, x^{2} e^{-2 x}, x^{3} e^{-2 x} ; \quad e^{2 x}, x e^{2 x}, x^{2} e^{2 x} ; \quad e^{-x} \cos (2 x), e^{-x} \sin (2 x) .
$$

6(d)
Use $4 r^{2}+4 r+65=0$ and the quadratic formula to obtain roots $r=-1 / 2+4 i,-1 / 2-4 i$. Case 2 of the recipe gives $y=\left(c_{1} \cos 4 t+c_{2} \sin 4 t\right) e^{-t / 2}$. This is under-damped (it oscillates). The illustration shows a spring, dashpot and mass with labels k, c, m, x and the equilibrium position of the mass.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad
7. (ch3)
(a) [25\%] The trial solution y with fewest Euler solution atoms, according to the method of undetermined coefficients, contains no solution of the homogeneous equation. Explain why, using the example $y^{\prime \prime}=1+x$.
(b) [75\%] Determine for $y^{(4)}+y^{(2)}=x+2 e^{x}+3 \sin x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients! The trial solution should be the one with fewest Euler solution atoms.
Solution to Problem 7.
$\mathbf{7}$ (a). Rule I says the trial solution is $y=d_{1}+d_{2} x$. Rule II says to multiply by x until no atom is a solution of $y^{\prime \prime}=0$. Then $y=d_{1} x^{2}+d_{2} x^{3}$ contains no terms of the homogeneous solution $y_{h}=c_{1}+c_{2} x$.
7(b). The homogeneous solution is $y_{h}=c_{1}+c_{2} x+c_{3} e^{3 x}+c_{4} e^{-3 x}$, because the characteristic polynomial has roots $0,0,3,-3$.
1 Rule I constructs an initial trial solution y for Euler solution atoms $1, x, e^{3 x}, e^{-3 x}, \cos x, \sin x$ giving

$$
\begin{aligned}
y & =y_{1}+y_{2}+y_{3}+y_{4} \\
y_{1} & =\left(d_{1}+d_{2} x\right) e^{3 x} \\
y_{2} & =d_{3}+d_{4} x+d_{5} x^{2}+d_{6} x^{3} \\
y_{3} & =d_{7} e^{-3 x} \\
y_{4} & =d_{8} \cos x+d_{9} \sin x .
\end{aligned}
$$

Linear combinations of the listed independent atoms are supposed to reproduce, by assignment of constants, all derivatives of the right side of the differential equation. Each of y_{1} to y_{4} is constructed to have the same base atom, which is the Euler atom obtained by stripping the power of x. For example, $x^{3}=x^{3} e^{0 x}$ strips to base atom $e^{0 x}$ or 1 .
2 Rule II is applied individually to each of $y_{1}, y_{2}, y_{3}, y_{4}$ to give the corrected trial solution

$$
\begin{aligned}
& y=y_{1}+y_{2}+y_{3}+y_{4}, \\
& y_{1}=x\left(d_{1}+d_{2} x\right) e^{3 x}, \\
& y_{2}=x^{2}\left(d_{3}+d_{4} x+d_{5} x^{2}+d_{6} x^{3}\right), \\
& y_{3}=x\left(d_{7} e^{-3 x}\right), \\
& y_{4}=d_{8} \cos x+d_{9} \sin x .
\end{aligned}
$$

The powers of x multiplied in each case are selected to eliminate terms in the initial trial solution which duplicate homogeneous equation Euler solution atoms. The factor used is exactly x^{s} of the Edwards-Penney table, where s is the multiplicity of the characteristic equation root r that produced the related atom in the homogeneous solution y_{h}. Terms in y_{4} are not solutions of the homogeneous equation, therefore y_{4} is unaltered.

Use this page to start your solution. Attach extra pages as needed, then staple.

Differential Equations 2280

Midterm Exam 1 [8:35]

Wednesday, 25 February 2009

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[25 \%]$ Solve $y^{\prime}=\frac{3+x^{2}}{1+x^{2}}$.
(b) $[25 \%]$ Solve $y^{\prime}=(2 \sin x+\cos x)(\sin x-2 \cos x)$.
(c) $[25 \%]$ Solve $y^{\prime}=\frac{x \tan \left(\ln \left(1+x^{2}\right)\right)}{1+x^{2}}, y(0)=2$.
(d) $[25 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(t^{2} v(t)\right)=0, v(2)=10$ and the position model $\frac{d x}{d t}=v(t), x(2)=-20$.
(a)

$$
y=\int \frac{3+x^{2}}{1+x^{2}} d x=\int \frac{2 d x}{1+x^{2}}+\int 1 d x=2 \tan ^{-1}(x)+x+c
$$

(b) $y=\int(2 \sin x+\cos x)(2 \sin x+\cos x)^{1}(-1) d x=-\frac{1}{2}(2 \sin x+\cos x)^{2}+c$
(c) $\begin{aligned} y & =\int \frac{x \tan \left(\ln \left(1+x^{2}\right)\right)}{1+x^{2}} d x & & u=\ln \left(1+x^{2}\right) \\ & =\int \tan (u) \frac{d u}{2} & & d u=\frac{2 x}{1+x^{2}} d x\end{aligned}$
$=\frac{-1}{2} \ln (\cos (u))+c$
$=-\frac{1}{2} \ln \left(\cos \left(\ln \left(1+x^{2}\right)\right)\right)+c$
(d) $t^{2} v(t)=c \Rightarrow 4 v(2)=c \Rightarrow 40=c$

$$
\begin{aligned}
& v(t)=\frac{40}{t^{2}} \\
& x^{\prime}=\frac{40}{t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{t^{2}} \\
& x=-40 t^{-1}+c \Rightarrow-20=-40 / 2+c \Rightarrow c=0
\end{aligned}
$$

$$
[x=-40 / t]
$$

Use this page to start your solution. Attach extra pages as needed, then staple.
\qquad
2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[40 \%]$ Check (X) the problems that can be put into separable form. No details expetted.

X	$y^{\prime}+x y=y\left(2 x+e^{x}\right)+x^{2} y$	\triangle	$y^{\prime}=(x-1)(y+1)+(1-x) y$
\triangle	$y^{\prime}=2 e^{2 x-y} e^{3 y}+3 e^{3 x+2 y}$	\square	$y^{\prime}+x^{2} e^{y}=x y$

(b) $[10 \%]$ Is $y^{\prime}+x(y+1)=y e^{x}+x$ separable? No details expected.
(c) [10\%] Give an example of $y^{\prime}=f(x, y)$ which is separable and linear but not quadrature.

No details expected.
(d) [40\%] Apply tests to show that $y^{\prime}=x+e^{y}$ is not separable and not linear. Supply all details.
(a) $y^{\prime}+x y=2 x y+e^{x} y+x^{2} y \quad$ Linear, separable

$$
y^{\prime}=2 e^{2 x} e^{2 y}+3 e^{3 x} e^{2 y} \quad \operatorname{sep} a n k b
$$

$$
y^{\prime}=x y-y+x-1+y-x y=x-1 \quad S \angle Q
$$

$$
y^{\prime}=-x^{2} e^{y}+x y \quad \text { not } S, Q \text { ar } L
$$

(b) $y^{\prime}=y e^{x}+x-x y-x=y e^{x}-x y=y\left(e^{x}-x\right)$ yes, separable.
(c) $y^{\prime}=x y$
(d) $f(x, y)=x+e^{y}$

$$
\begin{aligned}
& f(x, y)=x+e \\
& \frac{f x}{f}=\frac{1}{x+e^{y}} \text { not indep } y y \Rightarrow \text { not leper } d b l \\
& f y=e^{y} \text { not mode } y y \Rightarrow \text { Not linear }
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad
3. (Solve a Separable Equation)

Given $(x+3)(y+1) y^{\prime}=\left((x+3) e^{-x+2}+3 x^{2}+2\right)(y-1)(y+2)$.
Find a non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

$$
\begin{aligned}
& \frac{y+1}{(y-1)(y+2)} y^{\prime}=e^{2-x}+\frac{3 x^{2}+2}{x+3} \\
& \left(\frac{A}{y-1}+\frac{B}{y+2}\right) y^{\prime}=e^{2-x}+3 x-9+\frac{29}{x+3} \\
& \text { integrate } \\
& \begin{aligned}
\frac{2}{3} \ln |y-1|+\frac{1}{3} \ln |y+2|= & -e^{-x+2}+\frac{3}{2} x^{2}-9 x+29 \ln |x+3| \\
& +C
\end{aligned} \\
& \frac{\text { Lome Divisun }}{x + 3 \longdiv { \frac { 3 x - 9 } { 3 x ^ { 2 } + 2 } } \frac { 3 x ^ { 2 } + 9 x } { - 9 x + 2 }} \\
& \frac{-9 x-27}{29} \\
& \frac{\text { partial fractions }}{y+1=A(y+2)+B(y-1)} \\
& -1=-3 B \\
& 2=3 A
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad
4. (Linear Equations)
(a) $[60 \%]$ Solve the linear model $5 x^{\prime}(t)=-160+\frac{25}{2 t+3} x(t), x(0)=32$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-(2 x) y=0$.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}+10 y=7$ using the superposition principle $y=y_{h}+y_{p}$. Expected are answers for y_{h} and y_{p}.
(a)

$$
x^{\prime}+\frac{-5}{21+3}=\frac{-160}{5}, \quad x(0)=32
$$

$$
u=\int \frac{-5}{2 t+3} d t
$$

$$
\left(e^{4} x\right)^{\prime}=-32 e^{4}
$$

$$
u=-\frac{5}{2} \ln |2 \cdot t+3|
$$

$$
e^{n} x=-32 \int(2 t+3)^{-5 / 2} d t \quad e^{4}=(2 t+3)^{-5 / 2}
$$

$$
=-32 \frac{(2 t+3)}{(-3 / 2)(2)}+c
$$

$$
\begin{aligned}
& x=\frac{32}{3}(2 t+3)+c(2 t+3)^{5 / 2} \rightarrow 32=\frac{32}{3}(0+3)+c 3^{5 / 2} \\
& \rightarrow e=0
\end{aligned}
$$

$$
x=\frac{64}{3} t+32
$$

(b) $y=\frac{c}{e^{-x^{2}}}$
(c) $y=\frac{7}{10}+\frac{c}{e^{2 x}}$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

5. (Stability)

(a) $[50 \%]$ Draw a phase line diagram for the differential equation

$$
\frac{d x}{d t}=\left(\ln \left(1+5 x^{2}\right)\right)^{1 / 5}(|2 x-1|-3)^{3}(2+x)^{2}\left(4-x^{2}\right)\left(1-x^{2}\right)^{3} e^{\cos x}
$$

$$
x=0
$$

$$
\begin{aligned}
& 2 x-1-3=0 \\
& 2 x-3=0
\end{aligned}
$$

Expected in the phase line diagram are equilibrium points and signs of $d x / d t$.
$2 x-1+3=0$

(b) $[50 \%]$ Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Use this page to start your solution. Attach extra pages as needed, then staple.

