Differential Equations 2280 Sample Midterm Exam 2
 Thursday, 25 March 2008

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

1. $(\operatorname{ch} 3)$

Using Euler's theorem on atoms and the characteristic equation for higher order constant-coefficient differential equations, write out the general solutions for (a), (b), (c).
(a) $[25 \%] y^{\prime \prime}+4 y^{\prime}+4 y=0$
(b) $[25 \%] y^{(5)}+4 y^{(4)}=0$
(c) [25\%] Characteristic equation $r(r-3)\left(r^{3}-9 r\right)^{2}\left(r^{2}+4\right)^{3}=0$
(d) [25\%] Given $6 x^{\prime \prime}(t)+7 x^{\prime}(t)+2 x(t)=0$, which represents an unforced damped spring-mass system with $m=6, c=7, k=2$. Solve the differential equation [15\%]. Classify the answer as over-damped, critically damped or under-damped [5\%]. Illustrate in a physical model drawing the meaning of constants $m, c, k[5 \%]$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

2. (ch3)

(a) $[60 \%]$ Determine for $y^{(6)}+y^{(4)}=x+2 x^{2}+x^{3}+e^{-x}+x \sin x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients! The trial solution should be the one with fewest atoms. (b) $[40 \%]$ The corrected trial solution in undetermined coefficients for $y^{(4)}(t)+y^{\prime \prime}(t)=$ $t-\sin t$ can be constructed from $T(s) \mathcal{L}(t-s \sin t)$ where $T(s)$ is the transfer function. Show the Laplace and partial fraction details necessary to obtain the corrected trial solution.
Note 1. Don't find $y_{p}(t)$ - find the trial solution with symbols d_{1}, d_{2}, \ldots.
Note 2. Certain partial fraction terms are removed before forming the trial solution. Document where it happens, but don't explain why.

Name. \qquad

3. (ch3 and ch7)

(a) [50\%] Find by any applicable method the steady-state periodic solution for the equation $x^{\prime \prime}+4 x^{\prime}+6 x=10 \cos (2 t)$.
(b) [50\%] Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}+3 y^{\prime}+2 y=x e^{2 x}$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. $(\operatorname{ch} 7)$

(a) $[25 \%]$ Solve by Laplace's method $x^{\prime \prime}+x=\cos t, x(0)=x^{\prime}(0)=0$.
(b) $[10 \%]$ Does there exist $f(t)$ of exponential order such that $\mathcal{L}(f(t))=\frac{s}{s+1}$? Details required.
(c) [15\%] Linearity $\mathcal{L}\left(c_{1} f+c_{2} g\right)=c_{1} \mathcal{L}(f)+c_{2} \mathcal{L}(g)$ is one Laplace rule. State four other Laplace rules. Forward and backward table entries are not rules, which means $\mathcal{L}(1)=1 / s$ doesn't count.
(d) [25\%] Solve by Laplace's resolvent method

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =2 x(t)
\end{aligned}
$$

with initial conditions $x(0)=-1, y(0)=2$.
(e) [25\%] Derive $y(t)=\int_{0}^{t} \sin (t-u) f(u) d u$ by Laplace transform methods from the forced oscillator problem

$$
y^{\prime \prime}(t)+y(t)=f(t), \quad y(0)=y^{\prime}(0)=0
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
5. (ch7)
(a) [25\%] Solve $\mathcal{L}(f(t))=\frac{10}{\left(s^{2}+8\right)\left(s^{2}+4\right)}$ for $f(t)$.
(b) $[25 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s+1}{s^{2}(s+2)}$.
(c) $[20 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s-1}{s^{2}+2 s+5}$.
(d) [10\%] Solve for $f(t)$ in the relation

$$
\mathcal{L}(f)=\frac{d}{d s} \mathcal{L}\left(t^{2} \sin 3 t\right)
$$

(e) $[10 \%]$ Solve for $f(t)$ in the relation

$$
\mathcal{L}(f)=\left.\left(\mathcal{L}\left(t^{3} e^{9 t} \cos 8 t\right)\right)\right|_{s \rightarrow s+3}
$$

Use this page to start your solution. Attach extra pages as needed, then staple.

