\qquad

Differential Equations 2280

Midterm Exam 1 [8:35]
Wednesday, 25 February 2009

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[25 \%]$ Solve $y^{\prime}=\frac{3+x^{2}}{1+x^{2}}$.
(b) $[25 \%]$ Solve $y^{\prime}=(2 \sin x+\cos x)(\sin x-2 \cos x)$.
(c) $[25 \%]$ Solve $y^{\prime}=\frac{x \tan \left(\ln \left(1+x^{2}\right)\right)}{1+x^{2}}, y(0)=2$.
(d) [25\%] Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(t^{2} v(t)\right)=0, v(2)=10$ and the position model $\frac{d x}{d t}=v(t), x(2)=-20$.

Name.

2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[40 \%]$ Check (X) the problems that can be put into separable form. No details expected.

\square	$y^{\prime}+x y=y\left(2 x+e^{x}\right)+x^{2} y$	\square	$y^{\prime}=(x-1)(y+1)+(1-x) y$
\square	$y^{\prime}=2 e^{2 x-y} e^{3 y}+3 e^{3 x+2 y}$	\square	$y^{\prime}+x^{2} e^{y}=x y$

(b) $[10 \%]$ Is $y^{\prime}+x(y+1)=y e^{x}+x$ separable? No details expected.
(c) $[10 \%]$ Give an example of $y^{\prime}=f(x, y)$ which is separable and linear but not quadrature. No details expected.
(d) [40\%] Apply tests to show that $y^{\prime}=x+e^{y}$ is not separable and not linear. Supply all details.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

3. (Solve a Separable Equation)

Given $(x+3)(y+1) y^{\prime}=\left((x+3) e^{-x+2}+3 x^{2}+2\right)(y-1)(y+2)$.
Find a non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $5 x^{\prime}(t)=-160+\frac{25}{2 t+3} x(t), x(0)=32$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-(2 x) y=0$.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}+10 y=7$ using the superposition principle $y=y_{h}+y_{p}$. Expected are answers for y_{h} and y_{p}.

Name.
5. (Stability)
(a) $[50 \%]$ Draw a phase line diagram for the differential equation

$$
\frac{d x}{d t}=\left(\ln \left(1+5 x^{2}\right)\right)^{1 / 5}(|2 x-1|-3)^{3}(2+x)^{2}\left(4-x^{2}\right)\left(1-x^{2}\right)^{3} e^{\cos x}
$$

Expected in the phase line diagram are equilibrium points and signs of $d x / d t$.
(b) [50\%] Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Use this page to start your solution. Attach extra pages as needed, then staple.

