Differential Equations 2280 Final Exam

 Wednesday, 6 May 2009, 8:00-10:00amInstructions: This in-class exam is 120 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (ch3)
(1a) $[20 \%]$ Solve $2 v^{\prime}(t)=-8+\frac{2}{2 t+1} v(t), v(0)=-4$. Show all integrating factor steps.
(1b) $[10 \%]$ Solve for the general solution: $y^{\prime \prime}+4 y^{\prime}+6 y=0$.
(1c) $[10 \%]$ Solve for the general solution of the homogeneous constant-coefficient differential equation whose characteristic equation is $r\left(r^{2}+r\right)^{2}\left(r^{2}+9\right)^{2}=0$.
(1d) [20\%] Find a linear homogeneous constant coefficient differential equation of lowest order which has a particular solution $y=x+\sin \sqrt{2} x+e^{-x} \cos 3 x$.
(1e) [15\%] A particular solution of the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (2 t)$ happens to be $x(t)=11 \cos 2 t+e^{-t} \sin \sqrt{11} t-\sqrt{11} \sin 2 t$. Assume m, c, k all positive. Find the unique periodic steady-state solution x_{SS}.
(1f) [25\%] Determine for $y^{\prime \prime \prime}+y^{\prime \prime}=100+2 e^{-x}+\sin x$ the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Use this page to start your solution. Attach extra pages as needed, then staple.

2. (ch5)

(2a) [25\%] A certain 2×2 matrix A has eigenpairs $\left(4,\binom{-1}{1}\right),\left(6,\binom{1}{1}\right)$. The general solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is $\mathbf{x}(t)=e^{A t} \mathbf{x}(0)$. Eigenanalysis gives a different formula for $\mathbf{x}(t)$. Combine these facts to find $e^{A t}$.
(2b) $[25 \%]$ Let $A=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$. The Cayley-Hamilton method says that the solution of $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\binom{1}{2}$ is given by $\mathbf{x}(t)=e^{3 t} \mathbf{c}_{1}+e^{5 t} \mathbf{c}_{2}$. Find the constant vectors $\mathbf{c}_{1}, \mathbf{c}_{2}$ which produce the solution with $\mathbf{x}(0)=\binom{1}{-1}$.
(2c) [20\%] Let $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$. Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ using eigenanalysis.
(2d) $[20 \%]$ Let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$. Find the general solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ using the exponential matrix. The Laplace resolvent formula implies $\mathcal{L}\left(e^{A t}\right)=(s I-A)^{-1}$. Putzer's formula also applies. Use any method available to find $e^{A t}$.
(2e) $[10 \%]$ Let $e^{A t}=\left(\begin{array}{rr}e^{t} & 0 \\ t e^{t} & e^{t}\end{array}\right)$. Find A.

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (ch6)
(3a) [20\%] Compute all equilibrium points of $x^{\prime}=14 x-x^{2} / 2-x y, y^{\prime}=16 y-y^{2} / 2-x y$.
(3b) $[40 \%]$ For the nonlinear competition system $x^{\prime}=14 x-x^{2} / 2-x y, y^{\prime}=16 y-$ $y^{2} / 2-x y$, compute the linearization at $(12,8)$, which is a linear equation $\mathbf{u}^{\prime}=A \mathbf{u}$. Classify the unique equilibrium $(0,0)$ of $\mathbf{u}^{\prime}=A \mathbf{u}$ as a node, spiral, center, saddle. What classification can be deduced for the nonlinear system?
(3c) $[20 \%]$ Write the nonlinear pendulum equation $x^{\prime \prime}+\sin x=0$ as a nonlinear dynamical system. Then find all equilibrium points of the dynamical system.
(3d) [20\%] The dynamical system $x^{\prime}=y+1, y^{\prime}=x+y$ can be solved by various methods. Solve it and classify its unique equilibrium point $x=1, y=-1$ as a node, saddle, center or spiral.

Use this page to start your solution. Attach extra pages as needed, then staple.

4. $(\operatorname{ch} 7)$

(4a) [20\%] Explain Laplace's Method, as applied to the differential equation $x^{\prime}(t)+$ $2 x(t)=e^{t}, x(0)=1$.
(4b) [15\%] Solve $\mathcal{L}(f(t))=\frac{10}{\left(s^{2}+4\right)\left(s^{2}+9\right)}$ for $f(t)$.
(4c) [15\%] Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s^{2}(s+3)}$.
(4d) [10\%] Find $\mathcal{L}(f)$ given $f(t)=(-t) e^{2 t}$.
(4e) [20\%] Solve $x^{\prime \prime \prime}+x^{\prime \prime}=0, x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0$ by Laplace's Method.
(4f) [20\%] Solve the system $x^{\prime}=x+y, y^{\prime}=x-y+2, x(0)=0, y(0)=0$ by Laplace's Method.

Use this page to start your solution. Attach extra pages as needed, then staple.

