
MATH 2270-2 Exam 2 S2016

ANSWERS

Problem 1. (100 points) Define matrix A, vector ~b and vector variable ~x by the

equations

A =

 −2 3 0

0 −4 0

1 4 1

 , ~b =

 −3

5

1

 , ~x =

 x1

x2

x3

 .

For the system A~x = ~b, find x3 by Cramer’s Rule, showing all details (details count 75%).

To save time, do not compute x1, x2!

Answer:

x3 = ∆3/∆, ∆ = det

 −2 3 0

0 −4 1

1 4 1

 = 8, ∆3 = det

 −2 3 −3

0 −4 5

1 4 1

 = 51, x3 = 51
8

.

Problem 2. (100 points) Define matrix A =

 3 1 0

3 3 1

0 2 4

. Find a lower triangular

matrix L and an upper triangular matrix U such that A = LU .

Answer:

Let E1 be the result of combo(1,2,-1) on I, and E2 the result of combo(2,3,-1) on I. Then

E2E1A = U =

 3 1 0

0 2 1

0 0 3

. Let L = E−1
1 E−1

2 =

 1 0 0

1 1 0

0 1 1

.

Problem 3. (100 points) Find the complete solution ~x = ~xh + ~xp for the nonhomoge-

neous system  3 1 0

3 3 1

0 0 0


 x1

x2

x3

 =

 2

3

0

 .

Please display answers for both ~xh and ~xp. The homogeneous solution ~xh is a linear combi-

nation of Strang’s special solutions. Symbol ~xp denotes a particular solution.

Answer:



The augmented matrix has reduced row echelon form (last frame) equal to the matrix 1 0 −1/6 1/2

0 1 1/2 1/2

0 0 0 0

. Then x3 = t1, x2 = −t1/2 + 1/2, x1 = t1/6 + 1/2 is the general

solution in scalar form. The partial derivative on t1 gives the homogeneous solution basis

vector

 −1/6

−1/2

1

. Then ~xh = c1

 −1/6

−1/2

1

. Set t1 = 0 in the scalar solution to find a

particular solution ~xp =

 1/2

1/2

0

.

Problem 4. (100 points) Given a basis ~v1 =

3

2

1

 , ~v2 =

4

4

1

 for a subspace S of

R3, and ~v =

1

2

0

 in S, then ~v = c1~v1 + c2~v2 for a unique set of coefficients c1, c2, called the

coordinates of ~v relative to the basis ~v1, ~v2. Compute c1 and c2.

Answer:

c1 = −1, c2 = 1.

Problem 5. (100 points) The functions 1, x2,
√
x7 are independent in the vector space

V of all functions on 0 < x <∞. Check the independence tests which apply.

Wronskian test Wronskian determinant of f1, f2, f3 nonzero at x = x0

implies independence of f1, f2, f3.

Sampling test Sampling determinant for samples x = x1, x2, x3

nonzero implies independence of f1, f2, f3.

Rank test Three vectors are independent if their augmented ma-

trix has rank 3.

Determinant test Three vectors are independent if their augmented ma-

trix is square and has nonzero determinant.

Orthogonality test Three vectors are independent if they are all nonzero

and pairwise orthogonal.

Pivot test Three vectors are independent if their augmented ma-

trix A has 3 pivot columns.
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Answer:

The first and second apply to the given functions, while the others apply only to fixed

vectors.

Problem 6. (100 points) Consider a 3× 3 real matrix A with eigenpairs2,

 1

4

−4


 ,

1 + i,

 i

1

0


 ,

1− i,

 −i1
0


 .

(a) [60%] Display an invertible matrix P and a diagonal matrix D such that

AP = PD.

(b) [40%] Display a matrix product formula for A. To save time, do not evaluate

any matrix products.

Answer:

(a) The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues

2, 1 + i, 1 − i, taken in the same order. (b) The matrix formula comes from AP = PD, by

solving for A = PDP−1.

Problem 7. (100 points) The matrix A =

 3 −1 0

−1 3 0

−1 −1 4

 has eigenvalues 2, 4, 4.

Find all eigenvectors for λ = 4. To save time, don’t find the eigenvector for λ = 2.

Then report whether or not matrix A is diagonalizable.

Answer:

Because A− 4I =

 −1 −1 0

−1 −1 0

−1 −1 0

 has RREF B =

 1 1 0

0 0 0

0 0 0

, then there are two eigen-

pairs for λ = 4, with eigenvectors ~v1 =

 −1

1

0

 and ~v2 =

 0

0

1

. These answers are

Strang’s special solutions for the homogeneous problem B~v = ~0. The matrix is diagonaliz-

able, because there are three eigenpairs.

Problem 8. (100 points) Using the subspace criterion, write three different hypotheses
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each of which imply that a set S in a vector space V is not a subspace of V . The full statement

of three such hypotheses is called the Not a Subspace Theorem.

Answer:

(1) If the zero vector is not in S, then S is not a subspace.

(2) If two vectors in S fail to have their sum in S, then S is not a subspace.

(3) If a vector is in S but its negative is not, then S is not a subspace.

Problem 9. (100 points) Define S to be the set of all vectors ~x =

 x1

x2

x3

 in R3 such

that x1 + x3 = x2, x3 + x2 = x1 and x1 − x3 = 0. Prove that S is a subspace of R3.

Answer:

Let A =

 1 −1 1

−1 1 1

1 0 −1

. Then the restriction equations can be written as A~x = ~0.

Apply the nullspace theorem (also called the kernel theorem), which says that the nullspace

of a matrix is a subspace.

Another solution: The given restriction equations are linear homogeneous algebraic equa-

tions. Therefore, S is the nullspace of some matrix B, hence a subspace of R3. This solution

uses the fact that linear homogeneous algebraic equations can be written as a matrix equation

B~x = ~0.

Problem 10. (100 points) Let A be a 100× 29 matrix. Assume the columns of ATA

are independent. Prove that A has independent columns.

Answer:

The columns of matrix B are independent if and only if the nullspace of B is the zero vector.

If you don’t know this result, then find it in Lay’s book, or prove it yourself. Also used: A

square matrix has independent columns if and only if it is invertible.

Assume ~x is in the nullspace of A, A~x = ~0, then multiply by AT to get ATA~x = ~0. Because

ATA is invertible, then ~x = ~0, which proves the nullspace of A is the zero vector. We

conclude that the columns of A are independent.

Problem 11. (100 points) Let 3× 3 matrices A, B and C be related by AP = PB and

BQ = QC for some invertible matrices P and Q. Prove that the characteristic equations of

A and C are identical.
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Answer:

The proof depends on the identityA−rI = PBP−1−rI = P (B−rI)P−1 and the determinant

product theorem |CD| = |C||D|. We get |A − rI| = |P ||B − rI||P−1| = |PP−1||B − rI| =

|B − rI|. Then A and B have exactly the same characteristic equation. Similarly, B and

C have the same characteristic equation. Therefore, A and C have the same characteristic

equation.

Problem 12. (100 points) The Fundamental Theorem of Linear Algebra says

that the null space of a matrix is orthogonal to the row space of the matrix.

Let A be an m × n matrix. Define subspaces S1 = column space of A, S2 = null space of

AT . Prove that a vector ~v orthogonal to S2 must be in S1.

Answer:

The fundamental theorem of linear algebra is summarized by rowspace ⊥ nullspace. Re-

place A by AT . Then the result says that colspace(A) ⊥ nullspace(AT) or S1 ⊥ S2.

Results known are dim nullspace = nullity, dim rowspace = rank, and rank + nullity =

column dimension of the matrix. Because S1 ⊥ S2, then the two subspaces S1, S2 =

intersect in the zero vector. Their dimensions are rank(A) and nullity(AT ). Because

rank(A) = rank(AT ), then their two dimensions add to m, as follows: dim(S1)+dim(S2) =

rank(A) + nullity(AT ) = rank(AT ) + nullity(AT ) = m. Orthogonality of the two sub-

spaces implies a basis for S1 added to a basis for S2 supplies a basis for Rm. Vector ~v is

given to be orthogonal to S2. Then it must have a basis expansion involving only the basis

for S1 =colspace(A). This proves that ~v is in S1, which is the column space of A.

A shorter proof is possible, starting with the result that Rn equals the direct sum of the

subspaces S1 and S2. The above details proved this result, as part of the solution. Then

the only details left are to add the bases together and expand ~v in terms of the basis ele-

ments. The basis elements from S2 are orthogonal to ~v, therefore ~v is expressed as a linear

combination of basis elements from S1, which proves that ~v is in S1 = the column space of

A.
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