Math 3150 Partial Differential Equations for Engineers \quad Spring 2006

NAME:...

Final
May 2, 2006.

1. Consider separately each of the following equations for the function $u(x, t)$. Does the superposition principle hold for it?
(a) $u_{t t}=u_{x x}+1$
(b) $u_{t t}=u_{x x}+x$
(c) $u_{t t}=u_{x x}+t$
(d) $u_{t t}=u_{x x}+u$
(e) $u_{t t}=u_{x x}+u^{2}$
2. Consider the following equation for the function $u(x, y): x u_{x}+y u_{y}=0$.

On which curves does the function $u(x, y)$ stay constant? Sketch those curves.
3. Consdider function $f(x)$ which on the interval $-p<x<p$ (p is a positive number) is defined as

$$
f(x)=\left\{\begin{array}{l}
1 \text { if }|x|<p / 2, \\
0 \text { if }-p<x<-p / 2, \\
0 \text { if } p / 2<x<p .
\end{array}\right.
$$

(a) Assume that this function is $2 p$-periodic.

Sketch its graph over 3 periods and find its Fourier series.
(b) Assume that $f(x) \equiv 0$ outside the interval $-p<x<p$.

Sketch its graph and find its Fourier transform. Sketch the Fourier transform.
4. Solve the following boundary value problem for the function $u(x, t)$:

$$
\begin{array}{r}
u_{t t}=u_{x x} \\
u(0, t)=u(\pi, t)=0 \\
u(x, 0)=\sin (x)+0.05 \sin (7 x) \\
u_{t}(x, 0)=0.1 \sin (3 x)
\end{array}
$$

5. Solve the following boundary value problem for the function $u(x, t)$:

$$
\begin{array}{r}
u_{t}=u_{x x} \\
u(0, t)=u(\pi, t)=0 \\
u(x, 0)=1
\end{array}
$$

6. Find the steady temperature in a bar of length L if the ends of the bar are held at the temeratures T_{1} and T_{2} (the latteral sides of the bar are insulated).
7. Solve the following boundary value problem for the function $u(x, y, t)$:

$$
\begin{array}{r}
u_{t t}=u_{x x}+u_{y y}, \\
u(x, 0, t)=u(0, y, t)=u(x, \pi, t)=u(\pi, y, t)=0, \\
u(x, y, 0)=0, u_{t}(x, y, 0)=(\sin x)(\sin 3 y) .
\end{array}
$$

8. Solve the following boundary value problem for the function $u(x, y)$:

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { in the square } \quad 0<x<\pi, \quad 0<y<\pi \\
u(x, 0)=0, u(0, y)=0, u(x, \pi)=\sin x, u(\pi, y)=\sin y .
\end{gathered}
$$

