Math 3150-1, Practice Final
 December 102008

Problem 1 (25 pts) Consider the 1D heat equation with homogeneous Neumann boundary conditions modeling a bar with insulated ends:

$$
\left\{\begin{align*}
u_{t} & =u_{x x} & & \text { for } 0<x<1 \text { and } t>0 \tag{1}\\
u_{x}(0, t) & =u_{x}(1, t)=0 & & \text { for } t>0 \\
u(x, 0) & =f(x), & & \text { for } 0<x<1
\end{align*}\right.
$$

(a) Use separation of variables with $u(x, t)=X(x) T(t)$ to show that a general solution to (1) is

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \exp \left[-(n \pi)^{2} t\right]
$$

Specify what the coefficients $a_{n}, n=0,1,2, \ldots$ are in terms of $f(x)$.
(b) Solve (1) with $f(x)=100 x$.
(c) Now consider the following 1D heat equation with inhomogeneous Neumann boundary conditions:

$$
\left\{\begin{align*}
v_{t} & =v_{x x} \text { for } 0<x<1 \text { and } t>0, \tag{2}\\
v_{x}(0, t) & =v_{x}(1, t)=1 \text { for } t>0 \\
v(x, 0) & =g(x), \text { for } 0<x<1
\end{align*}\right.
$$

Show that $v(x, t)=u(x, t)+x$ solves (2) with $g(x)=f(x)+x$ and $u(x, t)$ as in (b).
Problem 2 (25 pts) Consider a circular plate of radius 1 with radially symmetric initial temperature distribution $f(r)$, and where the outer rim is kept in an ice bath. The temperature distribution $u(r, t)$ is also radially symmetric and satisfies the 2D heat equation,

$$
\left\{\begin{align*}
u_{t} & =\Delta u \text { for } 0<r<1 \text { and } t>0 \tag{3}\\
u(r, 0) & =f(r) \text { for } 0<r<1 \\
u(1, t) & =0 \text { for } t>0
\end{align*}\right.
$$

A general solution to (3) has the form,

$$
u(r, t)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\alpha_{n} r\right) \exp \left[-\alpha_{n}^{2} t\right]
$$

where α_{n} is the n-th positive zero of $J_{0}(r)$.
(a) Use the initial conditions and the orthogonality conditions for Bessel functions (see end of exam), to show that

$$
A_{n}=\frac{2}{J_{1}^{2}\left(\alpha_{n}\right)} \int_{0}^{1} f(r) J_{0}\left(\alpha_{n} r\right) r d r .
$$

(b) Solve (3) with initial temperature $f(r)=J_{0}\left(\alpha_{2} r\right)$.
(c) Show that $\Delta(r \cos \theta)=0$. (Easier in Cartesian coordinates).
(d) Show that $v(r, \theta, t)=u(r, t)+r \cos \theta$ solves the following 2D heat equation with inhomogeneous Dirichlet boundary conditions,

$$
\left\{\begin{aligned}
v_{t} & =\Delta v \text { for } 0<r<1 \text { and } t>0 \\
v(r, 0) & =f(r)+r \cos \theta \text { for } 0<r<1 \\
v(1, t) & =\cos \theta \text { for } t>0
\end{aligned}\right.
$$

Problem 3 (25 pts) Consider the 2D wave equation below which models the vibrations of square membrane with fixed edges, initial position $f(x, y)$ and zero initial velocity.

$$
\left\{\begin{align*}
u_{t t} & =u_{x x}+u_{y y}, \text { for } 0<x<1,0<y<1 \text { and } t>0, \tag{4}\\
u(0, y, t) & =u(1, y, t)=0, \text { for } 0<y<1 \text { and } t>0 \\
u(x, 0, t) & =u(x, 1, t)=0, \text { for } 0<x<1 \text { and } t>0 \\
u(x, y, 0) & =f(x, y), \text { for } 0<x<1,0<y<1 \\
u_{t}(x, y, 0) & =0, \text { for } 0<x<1,0<y<1
\end{align*}\right.
$$

Separation of variables with $u(x, y, t)=X(x) Y(y) T(t)$ gives the ODEs:

$$
\begin{aligned}
X^{\prime \prime}+\mu^{2} X & =0, X(0)=0, X(1)=0 \\
Y^{\prime \prime}+\nu^{2} Y & =0, Y(0)=0, Y(1)=0 \\
T^{\prime \prime}+\left(\mu^{2}+\nu^{2}\right) T & =0, T^{\prime}(0)=0
\end{aligned}
$$

(a) Obtain the product solutions

$$
u_{m, n}(x, y, t)=B_{m, n} \cos \left(\lambda_{m, n} t\right) \sin (m \pi x) \sin (n \pi y)
$$

where $\lambda_{m, n}=\sqrt{(m \pi)^{2}+(n \pi)^{2}}$. Note: The ODE's for X and Y are very similar.
Solving one of them in detail and stating the result for the other one should be enough.
(b) Write down the general form of a solution $u(x, y, t)$ to (4). Use initial conditions and orthogonality of double sine series to express $B_{m, n}$ in terms of $f(x, y)$.
(c) Using that

$$
\int_{0}^{1} x(1-x) \sin (m \pi x) d x=\frac{2\left((-1)^{m}-1\right)}{\pi^{3} m^{3}}
$$

find the coefficients $B_{m, n}$ in the double sine series,

$$
x(1-x) y(1-y)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m, n} \sin (m \pi x) \sin (n \pi y)
$$

(d) Solve 2D wave equation (4) with $f(x, y)=x(1-x) y(1-y)$.

Problem 4 (25 pts) Use the Fourier transform method to solve

$$
\left\{\begin{aligned}
u_{t t} & =u_{t x x}, \text { for } x \in \mathbb{R} \text { and } t>0 . \\
u(x, 0) & =f(x), \text { for } x \in \mathbb{R} \\
u_{t}(x, 0) & =g(x), \text { for } x \in \mathbb{R}
\end{aligned}\right.
$$

where $f(x)$ and $g(x)$ have Fourier transforms. Give your answer in the form of an inverse Fourier transform.
Problem $5\left(25\right.$ pts) Let $f(x)=x \exp \left[-x^{2} / 2\right]$ and $g(x)=\exp \left[-x^{2}\right]$.
(a) What are the Fourier transforms of f and g ?
(b) What is the Fourier transform of $f * g$?
(c) Use (b) and operational properties of the Fourier Transform to show that

$$
(f * g)(x)=\frac{2}{3 \sqrt{3}} x \exp \left[-x^{2} / 3\right]
$$

Problem 6 (25 pts) Consider the heat equation on an infinite rod with non constant coefficients

$$
\left\{\begin{aligned}
u_{t} & =t^{2} u_{x x}, \text { for } x \in \mathbb{R} \text { and } t>0 \\
u(x, 0) & =f(x), \text { for } x \in \mathbb{R}
\end{aligned}\right.
$$

(a) Use the Fourier transform method to show that the solution satisfies $\widehat{u}(\omega, t)=\widehat{f}(\omega) \exp \left[-\omega^{2} t^{3} / 3\right]$. Hint: Solutions of the ODE $y^{\prime}+a x^{2} y=0$ have the form, $y(x)=C \exp \left[-a x^{3} / 3\right]$.
(b) Express $u(x, t)$ as a convolution.

Problem 7 (25 pts) Let

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

then f satisfies the differential equation in the sense of generalized functions: $f+f^{\prime}=\delta_{0}$. Fourier transform this expression and use operational properties of the Fourier transform to show that

$$
\widehat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \frac{1-i \omega}{1+\omega^{2}}
$$

