
Math 3150-1, Practice Final
December 10 2008

Problem 1 (25 pts) Consider the 1D heat equation with homogeneous Neumann bound-
ary conditions modeling a bar with insulated ends:

ut = uxx for 0 < x < 1 and t > 0,

ux(0, t) = ux(1, t) = 0 for t > 0,

u(x, 0) = f(x), for 0 < x < 1.

(1)

(a) Use separation of variables with u(x, t) = X(x)T (t) to show that a general solution to
(1) is

u(x, t) = a0 +
∞∑

n=1

an cos(nπx) exp[−(nπ)2t].

Specify what the coefficients an, n = 0, 1, 2, . . . are in terms of f(x).
(b) Solve (1) with f(x) = 100x.
(c) Now consider the following 1D heat equation with inhomogeneous Neumann boundary

conditions: 
vt = vxx for 0 < x < 1 and t > 0,

vx(0, t) = vx(1, t) = 1 for t > 0,

v(x, 0) = g(x), for 0 < x < 1

(2)

Show that v(x, t) = u(x, t) + x solves (2) with g(x) = f(x) + x and u(x, t) as in (b).
Problem 2 (25 pts) Consider a circular plate of radius 1 with radially symmetric initial
temperature distribution f(r), and where the outer rim is kept in an ice bath. The tem-
perature distribution u(r, t) is also radially symmetric and satisfies the 2D heat equation,

ut = ∆u for 0 < r < 1 and t > 0,

u(r, 0) = f(r) for 0 < r < 1,

u(1, t) = 0 for t > 0.

(3)

A general solution to (3) has the form,

u(r, t) =
∞∑

n=1

AnJ0(αnr) exp[−α2
nt],

where αn is the n−th positive zero of J0(r).
(a) Use the initial conditions and the orthogonality conditions for Bessel functions (see

end of exam), to show that

An =
2

J2
1 (αn)

∫ 1

0

f(r)J0(αnr)rdr.

(b) Solve (3) with initial temperature f(r) = J0(α2r).
(c) Show that ∆(r cos θ) = 0. (Easier in Cartesian coordinates).
(d) Show that v(r, θ, t) = u(r, t) + r cos θ solves the following 2D heat equation with inho-

mogeneous Dirichlet boundary conditions,
vt = ∆v for 0 < r < 1 and t > 0,

v(r, 0) = f(r) + r cos θ for 0 < r < 1,

v(1, t) = cos θ for t > 0.
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Problem 3 (25 pts) Consider the 2D wave equation below which models the vibrations
of square membrane with fixed edges, initial position f(x, y) and zero initial velocity.

utt = uxx + uyy, for 0 < x < 1, 0 < y < 1 and t > 0,

u(0, y, t) = u(1, y, t) = 0, for 0 < y < 1 and t > 0

u(x, 0, t) = u(x, 1, t) = 0, for 0 < x < 1 and t > 0

u(x, y, 0) = f(x, y), for 0 < x < 1, 0 < y < 1

ut(x, y, 0) = 0, for 0 < x < 1, 0 < y < 1.

(4)

Separation of variables with u(x, y, t) = X(x)Y (y)T (t) gives the ODEs:

X ′′ + µ2X = 0, X(0) = 0, X(1) = 0

Y ′′ + ν2Y = 0, Y (0) = 0, Y (1) = 0

T ′′ + (µ2 + ν2)T = 0, T ′(0) = 0.

(a) Obtain the product solutions

um,n(x, y, t) = Bm,n cos(λm,nt) sin(mπx) sin(nπy).

where λm,n =
√

(mπ)2 + (nπ)2. Note: The ODE’s for X and Y are very similar.
Solving one of them in detail and stating the result for the other one should be enough.

(b) Write down the general form of a solution u(x, y, t) to (4). Use initial conditions and
orthogonality of double sine series to express Bm,n in terms of f(x, y).

(c) Using that ∫ 1

0

x(1− x) sin(mπx)dx =
2((−1)m − 1)

π3m3
,

find the coefficients Bm,n in the double sine series,

x(1− x)y(1− y) =
∞∑

n=1

∞∑
m=1

Bm,n sin(mπx) sin(nπy).

(d) Solve 2D wave equation (4) with f(x, y) = x(1− x)y(1− y).

Problem 4 (25 pts) Use the Fourier transform method to solve
utt = utxx, for x ∈ R and t > 0.

u(x, 0) = f(x), for x ∈ R
ut(x, 0) = g(x), for x ∈ R

where f(x) and g(x) have Fourier transforms. Give your answer in the form of an inverse
Fourier transform.
Problem 5 (25 pts) Let f(x) = x exp[−x2/2] and g(x) = exp[−x2].
(a) What are the Fourier transforms of f and g?
(b) What is the Fourier transform of f ∗ g?
(c) Use (b) and operational properties of the Fourier Transform to show that

(f ∗ g)(x) =
2

3
√

3
x exp[−x2/3].
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Problem 6 (25 pts) Consider the heat equation on an infinite rod with non constant
coefficients {

ut = t2uxx, for x ∈ R and t > 0,

u(x, 0) = f(x), for x ∈ R.

(a) Use the Fourier transform method to show that the solution satisfies û(ω, t) = f̂(ω) exp[−ω2t3/3].
Hint: Solutions ot the ODE y′ + ax2y = 0 have the form, y(x) = C exp[−ax3/3].

(b) Express u(x, t) as a convolution.
Problem 7 (25 pts) Let

f(x) =

{
e−x if x ≥ 0

0 if x < 0
,

then f satisfies the differential equation in the sense of generalized functions: f + f ′ = δ0.
Fourier transform this expression and use operational properties of the Fourier transform
to show that

f̂(ω) =
1√
2π

1− iω
1 + ω2

.


