MATH 3150-1, PRACTICE MIDTERM EXAM 2 OCTOBER 242008

Total points: 100/100.
Problem 1 (30 pts) The goal of this problem is to solve the Heat Equation with mixed boundary conditions

$$
\left\{\begin{align*}
u_{t} & =3 u_{x x} & & \text { for } 0<x<1 \text { and } t>0 \tag{1}\\
u_{x}(0, t) & =0 & & \text { for } t>0 \\
u(1, t) & =0 & & \text { for } t>0 \\
u(x, 0) & =f(x) & & \text { for } 0<x<1
\end{align*}\right.
$$

(a) Use separation of variables to show that a general solution to (1) is

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n} \cos \left(\lambda_{n} x\right) \exp \left[-3 \lambda_{n}^{2} t\right], \quad \text { where } \lambda_{n}=\frac{2 n+1}{2} \pi .
$$

(b) Consider the inner product $(u, v)=\int_{0}^{1} u(x) v(x) d x$. Given the orthogonality relations valid for $n=0,1,2, \ldots$ and $m=0,1,2, \ldots$

$$
\left(\cos \left(\lambda_{n} x\right), \cos \left(\lambda_{m} x\right)\right)= \begin{cases}\frac{1}{2} & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

show that

$$
a_{n}=2 \int_{0}^{1} \cos \left(\lambda_{n} x\right) f(x) d x, \quad \text { for } n=0,1,2, \ldots
$$

(c) Solve problem (1) with $f(x)=\cos (3 \pi x / 2)+2 \cos (7 \pi x / 2)$.

Problem 2 (30 pts) Consider the 2D Laplace equation below, which models the steady state temperature distribution of a square plate where the right and left sides are kept in an ice bath and the bottom and top sides have prescribed temperatures $f_{1}(x)$ and $f_{2}(x)$ respectively.

$$
\left\{\begin{array}{c}
u_{x x}+u_{y y}=0, \text { for } 0<x<1 \text { and } 0<y<1 \tag{2}\\
u(0, y)=u(1, y)=0, \text { for } 0<y<1 \\
u(x, 0)=f_{1}(x), \text { for } 0<x<1 \\
u(x, 1)=f_{2}(x), \text { for } 0<x<1
\end{array}\right.
$$

(a) Explain why it is possible to decompose (2) into the two subproblems below (the x and y below are implicitly in $(0,1))$.

$$
\text { (P1) }\left\{\begin{array} { l }
{ v _ { x x } + v _ { y y } = 0 , } \\
{ v (0 , y) = v (1 , y) = 0 , } \\
{ v (x , 0) = f _ { 1 } (x) , } \\
{ v (x , 1) = 0 }
\end{array} \quad (\mathrm { P } 2) \left\{\begin{array}{l}
w_{x x}+w_{y y}=0, \\
w(0, y)=w(1, y)=0, \\
w(x, 0)=0, \\
w(x, 1)=f_{2}(x)
\end{array}\right.\right.
$$

(b) Show that if we assume that the solution to (P2) is $w(x, y)=X(x) Y(y)$, then separation of variables gives

$$
\begin{aligned}
X^{\prime \prime}+k X & =0, \quad X(0)=0, \quad X(1)=0 \\
Y^{\prime \prime}-k Y & =0, \quad Y(0)=0
\end{aligned}
$$

(c) Assuming $k=\mu^{2}>0$, obtain the product solutions to (P2)

$$
w_{n}(x, y)=B_{n} \sin (n \pi x) \sinh (n \pi y)
$$

(d) Write down the general form of a solution to (P2), and use the formulas at the end of the exam to express B_{n} in terms of $f_{2}(x)$.
(e) In a similar way it is possible to obtain the product solutions to (P1),

$$
v_{n}(x, y)=A_{n} \sin (n \pi x) \sinh (n \pi(1-y))
$$

Write down the general form of a solution to (P1) and give an expression for A_{n} in terms of $f_{1}(x)$.
(f) Solve (2) with $f_{1}(x)=100$ and $f_{2}(x)=100 x(1-x)$. You may use the identity below (valid for $n=1,2, \ldots$):

$$
\int_{0}^{1} x(1-x) \sin (n \pi x) d x=\frac{2\left((-1)^{n}-1\right)}{\pi^{3} n^{3}}
$$

Problem 3 (30 pts) Consider a circular plate of radius 1 with initial temperature distribution of the form $f(r, \theta)=g(r) \cos 2 \theta$ and where the outer rim of the plate is kept in an ice bath. The temperature distribution $u(r, \theta, t)$ satisfies the 2D Heat equation

$$
\left\{\begin{align*}
u_{t} & =\Delta u & & \text { for } 0<r<1,0 \leq \theta \leq 2 \pi \text { and } t>0 \tag{3}\\
u(r, \theta, 0) & =f(r, \theta) & & \text { for } 0<r<1 \text { and } 0 \leq \theta \leq 2 \pi \\
u(1, \theta, t) & =0 & & \text { for } 0 \leq \theta \leq 2 \pi \text { and } t>0
\end{align*}\right.
$$

Because the initial temperature distribution is a multiple of $\cos 2 \theta$, the solution can be shown to be

$$
u(r, \theta, t)=\sum_{n=1}^{\infty} a_{2 n} J_{2}\left(\alpha_{2 n} r\right) \cos 2 \theta \exp \left[-\alpha_{2 n}^{2} t\right]
$$

where $\alpha_{2 n}$ denotes the n-th zero of the Bessel function of the first kind of order 2 , and

$$
a_{2 n}=\frac{2}{\pi J_{2+1}^{2}\left(\alpha_{2 n}\right)} \int_{0}^{1} \int_{0}^{2 \pi} f(r, \theta) J_{2}\left(\alpha_{2 n} r\right) \cos 2 \theta d \theta r d r \text { for } n=1,2, \ldots
$$

(a) Solve (3) with the initial temperatures

$$
f_{1}(r, \theta)=J_{2}\left(\alpha_{2,1} r\right) \cos 2 \theta \quad \text { and } \quad f_{2}(r, \theta)=J_{2}\left(\alpha_{2,2} r\right) \cos 2 \theta .
$$

(b) The steady state temperature distribution is $u=0$. Of the initial temperatures $f_{1}(r, \theta)$ and $f_{2}(r, \theta)$, which decays faster to the steady state? Justify your answer.

Problem 4 ($\mathbf{1 0} \mathbf{~ p t s) ~ R e c a l l ~ t h a t ~ t h e ~ L a p l a c i a n ~ i n ~ s p h e r i c a l ~ c o o r d i n a t e s ~ i s : ~}$

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1}{\tan \theta} \frac{\partial u}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}\right) .
$$

Determine whether the function $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ satisfies Laplace's equation $\Delta u=0$.

Some useful formulas

0.1. Orthogonality relations for sine series. With the inner product $(u, v)=\int_{0}^{a} u(x) v(x) d x$, we have for all m, n non-zero integers,

$$
\left(\sin \left(\frac{m \pi}{a} x\right), \sin \left(\frac{n \pi}{a} x\right)\right)= \begin{cases}\frac{2}{a} & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

0.2. Hyperbolic trigonometry.

$$
\begin{array}{rr}
\cosh x=\frac{e^{x}+e^{-x}}{2}, & \sinh x=\frac{e^{x}-e^{-x}}{2} \\
(\cosh x)^{\prime}=\sinh x, & (\sinh x)^{\prime}=\cosh x \\
\cosh ^{2} x-\sinh ^{2} y=1, & \sinh 0=0
\end{array}
$$

0.3. Bessel functions. The following identities are valid for $p \geq 0$ and $n=0,1, \ldots$.

$$
\int J_{1}(r) d r=-J_{0}(r)+C \quad \text { and } \quad \int r^{p+1} J_{p}(r) d r=r^{p+1} J_{p+1}(r)+C
$$

0.4. Orthogonality relations for Bessel functions. Let $a>0$ and $m \geq 0$ be fixed. Denote with $\alpha_{m n}$ the n-th positive zero of the Bessel function of the first kind of order m. With the inner product

$$
(u, v)=\int_{0}^{a} u(r) v(r) r d r
$$

we have for all j, k non-zero integers,

$$
\left(J_{m}\left(\frac{\alpha_{m j}}{a} r\right), J_{m}\left(\frac{\alpha_{m k}}{a} r\right)\right)= \begin{cases}\frac{a^{2}}{2} J_{m+1}^{2}\left(\alpha_{m j}\right) & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

