Math 3150-1, Practice Midterm Exam 1

September 182008

Total points: 100/100.
Problem 1 (20 pts) Consider the $2 p$-periodic function

$$
f(x)= \begin{cases}x-\frac{p}{2} & \text { if } 0 \leq x \leq p \\ x+\frac{p}{2} & \text { if }-p \leq x \leq 0\end{cases}
$$

(a) Sketch $f(x)$ for $x \in[-p, 3 p]$. Carefully label your axis.
(b) Is f continuous? Piecewise continuous? Piecewise smooth?
(c) Find the Fourier series of f.

Problem 2 ($\mathbf{1 5} \mathbf{~ p t s) ~ D e c i d e ~ w h e t h e r ~ t h e ~ f o l l o w i n g ~ p a r t i a l ~ d i f f e r e n t i a l ~ e q u a t i o n s ~ a r e ~ l i n e a r ~}$ or non-linear and if linear, whether they are homogeneous or non-homogeneous. Determine the order of the differential equation.
(a) $\left\{\begin{array}{l}u_{x x x x}+u_{x x}=u_{t t} \\ u(0, t)=u_{x}(0, t)=0 \\ u(1, t)=u_{x}(1, t)=0\end{array}\right.$
(c) $u_{x x}+u_{y y}=\exp \left[-x^{2}-y^{2}\right]$
(b) $u_{t}=u u_{x}+u_{x x}$
(d) $\left\{\begin{array}{l}u_{x x}=u_{t} \\ u(0, t)=0 \\ u_{x}(1, t)+u(1, t)=0\end{array}\right.$

Problem 3 (25 pts) Let $f(x)=x(1-x)$ be defined on $[0,1]$.
(a) Sketch the odd and even 2 -periodic extensions of $f(x)$. Carefully label your axis.
(b) Calculate the Sine and Cosine Series expansions of $f(x)$.
(c) Solve the one dimensional wave equation

$$
\left\{\begin{array}{l}
u_{t t}=2 u_{x x} \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=0
\end{array}\right.
$$

(d) Solve the one dimensional wave equation

$$
\left\{\begin{array}{l}
u_{t t}=2 u_{x x} \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=f(x)
\end{array}\right.
$$

Problem 4 (20 pts) Consider the one dimensional wave equation

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x} \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=\cos (\pi x)
\end{array}\right.
$$

Solve this differential equation using
(a) Fourier series
(b) D'Alembert's method

Problem 5 (20 pts) Consider the following one dimensional heat equations:
(A) $\left\{\begin{array}{l}u_{t}=u_{x x} \\ u(0, t)=u(1, t)=0 \\ u(x, 0)=x(1-x) .\end{array}\right.$
(B) $\left\{\begin{array}{l}u_{t}=u_{x x} \\ u(0, t)=1, u(1, t)=0 \\ u(x, 0)=1-x^{2} .\end{array}\right.$
(a) Give a physical interpretation of the boundary conditions for (A) and (B).
(b) Solve problem (A). Hint: You may use the results from problem 3c.
(c) What is the steady state temperature distribution $s(x)$ for (B)?
(d) Use your answer to (a) together with $s(x)$ to solve problem (B).

