Differential Equations and Linear Algebra 2250

Midterm Exam 1 Version 2 [10:45] Tuesday, 12 February 2008

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Quadrature Equations)

(a) [25%] Solve
$$y' = \frac{1+x^2}{1-x^2}$$
.

(b) [25%] Solve
$$y' = \sec x + \tan x$$
.

(c) [25%] Solve
$$y' = \frac{\sin(\ln|x|)}{x}$$
, $y(1) = 3$.

(d) [25%] Find the position x(t) from the velocity model $\frac{d}{dt}(e^{-t},v) = 2e^t$ and the position model $\frac{dx}{dt} = v(t)$.

@
$$y = \int \frac{1+x^2}{1-x^2} dx = -x - \ln|x-1| + \ln|x+1| + C$$

Detail: $\frac{1+x^2}{1-x^2} = -1 + \frac{-2}{x^2-1} = -1 + \frac{1}{x+1} - \frac{1}{x-1}$

B y = S(pecx + tanx)dx = ln | pecx + tanx | + ln | pecx | + C

Detail: std integral table entries

Also: -ln | cosx | = ln | pecx |

$$Q = \int \sin u \, du \qquad u = \ln |x|$$

$$y = -\cos \left(\ln |x|\right) + C \qquad C = 4 \text{ because } 3 = -\cos 0 + C$$

$$Q = 4 - \cos \left(\ln |x|\right)$$

①
$$\int \frac{d}{dt} (e^{t}v) dt = \int 2e^{t}$$

 $e^{t}v = 2e^{t} + c_{1}$
 $v = 2e^{2t} + c_{1}e^{t}$
 $x' = 2e^{2t} + c_{1}e^{t}$
 $x' = \frac{2}{3}e^{2t} + c_{1}e^{t} + c_{2}$

2. (Classification of Equations)

The differential equation y' = f(x, y) is defined to be separable provided f(x, y) = F(x)G(y) for some functions F and G.

(a) [40%] Check (X) the problems that can be put into separable form, but don't supply any details.

	X	y' = y(2x+3) + xy + 2y	y' = 1 + (x-1)(y+1) - xy
1	X	$y' = 2e^{2x}e^y + xe^{2x+y}$	$y' + \tan y = x$

- (b) [10%] State a calculus test which can verify that an equation y' = f(x, y) is linear but not quadrature.
- (c) [10%] Give an example of y' = f(x, y) which is separable but not quadrature and not linear. No details expected.
- (d) [40%] Apply a separable equation test to show that $y' = e^x + xe^y$ is not separable.

(a)
$$y' = (2x+3+x+2)y$$

 $y' = (2e^{2x}+xe^{2x})e^{y}$
 $y' = (2e^{2x}+xe^{2x})e^{y}$
 $y' = x-\tan y$ Not sep
(b) $\frac{\partial f}{\partial y}$ indep of y And not 0
(c) $y' = x^2 + y^2$ $\frac{fy}{f} = \frac{2y}{x^2 + y^2}$ depends on $x = y$ Not sep.
(d) $f = e^{x} + xe^{y}$
 $f_{y} = xe^{y}$

 $\frac{fy}{f} = \frac{xe^{y}}{e^{x} + xe^{y}} = \frac{1}{\frac{e^{x}e^{-y} + 1}{x}} depends on x \Rightarrow Not sep.$

3. (Solve a Separable Equation)

Given
$$yy' = \left(\frac{\cos^2 x}{\tan x} + \frac{2x^2 + 6}{2 + x}\right)(1 - y)(2 + y).$$

Find a non-equilibrium solution in implicit form.

To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

$$\frac{gg'}{(1-g)(2+g)} = \frac{\cos^3x}{2\pi x} + \frac{2x^2+6}{2+x}$$

$$\frac{-1/3}{4-1} + \frac{-2/3}{2+2} = \frac{(1-\sin^2 x)\cos x}{\sin x} + 2x - 4 + \frac{14}{x+2}$$

$$= \cot x - \sin x \cos x + 2x - 4 + \frac{14}{x+2}$$

$$= \cot x - \sin x \cos x + 2x - 4 + \frac{14}{x+2}$$

$$= \cot x - \sin x \cos x + 2x - 4 + \frac{14}{x+2}$$

Quedrature strg

Details
$$\frac{2x-4}{2+2} \xrightarrow{2x^2+1} \xrightarrow{$$

4. (Linear Equations)

- (a) [60%] Solve the linear model $10x'(t) = -70 + \frac{10}{2t+5}x(t)$, x(0) = -35. Show all integrating factor steps.
- (b) [20%] Solve the homogeneous equation $3\frac{dy}{dx} = -(4x^3)y$.
- (c) [20%] Solve $\frac{dy}{dx} = -2y + 3$ using the superposition principle $y = y_h + y_p$. Expected are

(c)
$$|20\%|$$
 Soire $\frac{dx}{dx} = -2y + 3$ using the superposition principle $y = y_0 + y_0$. Expected at answers for y_0 and y_0 .

(a) $x' - \frac{1}{2t + s} x = -7$

(b) $x' = -7$

(c) $x' = -7$

(d) $x' = -7$

(e) $x' = -7$

(f) $x' = -7$

(f) $x' = -7$

(g) $x' = -7$

(g)

- 5. (Stability)
 - (a) [50%] Draw a phase line diagram for the differential equation

$$\frac{dx}{dt} = \ln(1+3x^2) \left(1-\sqrt[4]{|3x|}\right)^3 (1+x)(4-x^2)(x-2)^3.$$

Expected in the phase line diagram are equilibrium points and signs of dx/dt.

(b) [50%] Draw a phase diagram with at least 10 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, neither spout nor funnel [a node], stable, unstable. A direction field is not expected nor required.

