Fourier Series

- Fourier Sine Series
- Fourier Cosine Series
- Fourier Series
 - Convergence of Fourier Series for 2T-Periodic Functions
 - Convergence of Half-Range Expansions: Cosine Series
 - Convergence of Half-Range Expansions: Sine Series
- Sawtooth Wave
- Triangular Wave
- Parseval's Identity and Bessel's Inequality
- Complex Fourier Series
- Dirichlet Kernel and Convergence

Fourier Sine Series

Definition. Consider the orthogonal system $\{\sin\left(\frac{n\pi x}{T}\right)\}_{n=1}^{\infty}$ on [-T, T]. A Fourier sine series with coefficients $\{b_n\}_{n=1}^{\infty}$ is the expression

$$F(x) = \sum_{n=1}^\infty b_n \sin\left(rac{n\pi x}{T}
ight)$$

Theorem. A Fourier sine series F(x) is an odd 2T-periodic function.

Theorem. The coefficients $\{b_n\}_{n=1}^{\infty}$ in a Fourier sine series F(x) are determined by the formulas (inner product on [-T, T])

$$b_n = rac{\left\langle F, \sin\left(rac{n\pi x}{T}
ight)
ight
angle}{\left\langle \sin\left(rac{n\pi x}{T}
ight), \sin\left(rac{n\pi x}{T}
ight)
ight
angle} = rac{2}{T} \int_0^T F(x) \sin\left(rac{n\pi x}{T}
ight) dx.$$

Fourier Cosine Series

Definition. Consider the orthogonal system $\{\cos\left(\frac{m\pi x}{T}\right)\}_{m=0}^{\infty}$ on [-T, T]. A Fourier cosine series with coefficients $\{a_m\}_{m=0}^{\infty}$ is the expression

$$F(x) = \sum_{m=0}^\infty a_m \cos\left(rac{m\pi x}{T}
ight)$$

Theorem. A Fourier cosine series F(x) is an even 2T-periodic function.

Theorem. The coefficients $\{a_m\}_{m=0}^{\infty}$ in a Fourier cosine series F(x) are determined by the formulas (inner product on [-T, T])

$$a_m = rac{\left\langle F, \cos\left(rac{m\pi x}{T}
ight)
ight
angle}{\left\langle \cos\left(rac{m\pi x}{T}
ight), \cos\left(rac{m\pi x}{T}
ight)
ight
angle} = \left\{ egin{array}{c} rac{2}{T}\int_0^T F(x)\cos\left(rac{m\pi x}{T}
ight) dx & m>0, \ rac{1}{T}\int_0^T F(x) dx & m=0. \end{array}
ight.$$

Fourier Series

Definition. Consider the orthogonal system $\{\cos\left(\frac{m\pi x}{T}\right)\}_{m=0}^{\infty}$, $\{\sin\left(\frac{n\pi x}{T}\right)\}_{n=1}^{\infty}$, on [-T, T]. A Fourier series with coefficients $\{a_m\}_{m=0}^{\infty}, \{b_n\}_{n=1}^{\infty}$ is the expression

$$F(x) = \sum_{m=0}^\infty a_m \cos\left(rac{m\pi x}{T}
ight) + \sum_{n=1}^\infty b_n \sin\left(rac{n\pi x}{T}
ight)$$

Theorem. A Fourier series F(x) is a 2T-periodic function.

Theorem. The coefficients $\{a_m\}_{m=0}^{\infty}, \{b_n\}_{n=1}^{\infty}$ in a Fourier series F(x) are determined by the formulas (inner product on [-T, T])

$$a_m = rac{\left\langle F, \cos\left(rac{m\pi x}{T}
ight)
ight
angle}{\left\langle \cos\left(rac{m\pi x}{T}
ight), \cos\left(rac{m\pi x}{T}
ight)
ight
angle} = \left\{ egin{array}{c} rac{1}{T}\int_{-T}^TF(x)\cos\left(rac{m\pi x}{T}
ight) dx & m>0, \ rac{1}{2T}\int_{-T}^TF(x) dx & m=0. \end{array}
ight.$$

$$b_n = rac{\left\langle F, \sin\left(rac{n\pi x}{T}
ight)
ight
angle}{\left\langle \sin\left(rac{n\pi x}{T}
ight), \sin\left(rac{n\pi x}{T}
ight)
ight
angle} = rac{1}{T}\int_{-T}^T F(x)\sin\left(rac{n\pi x}{T}
ight) dx.$$

Convergence of Fourier Series for 2T-Periodic Functions

The Fourier series of a 2T-periodic piecewise smooth function f(x) is

$$a_0 + \sum_{n=1}^\infty \left(a_n \cos\left(rac{n\pi x}{T}
ight) + b_n \sin\left(rac{n\pi x}{T}
ight)
ight)$$

where

$$a_0 = rac{1}{2T}\int_{-T}^T f(x)dx,
onumber \ a_n = rac{1}{T}\int_{-T}^T f(x)\cos\left(rac{n\pi x}{T}
ight)dx,
onumber \ b_n = rac{1}{T}\int_{-T}^T f(x)\sin\left(rac{n\pi x}{T}
ight)dx.$$

The series converges to f(x) at points of continuity of f and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

Convergence of Half-Range Expansions: Cosine Series

The Fourier cosine series of a piecewise smooth function f(x) on [0, T] is the even 2T-periodic function

$$a_0 + \sum_{n=1}^\infty a_n \cos\left(rac{n\pi x}{T}
ight)$$

where

$$a_0 = rac{1}{T}\int_0^T f(x)dx,
onumber \ a_n = rac{2}{T}\int_0^T f(x)\cos\left(rac{n\pi x}{T}
ight)dx.$$

The series converges on 0 < x < T to f(x) at points of continuity of f and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

Convergence of Half-Range Expansions: Sine Series

The Fourier sine series of a piecewise smooth function f(x) on [0, T] is the odd 2T-periodic function

$$\sum_{n=1}^\infty b_n \sin\left(rac{n\pi x}{T}
ight)$$

where

$$b_n = rac{2}{T} \int_0^T f(x) \sin\left(rac{n\pi x}{T}
ight) dx.$$

The series converges on 0 < x < T to f(x) at points of continuity of f and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

Sawtooth Wave _

Definition. The sawtooth wave is the odd 2π -periodic function defined on $-\pi \leq x \leq \pi$ by the formula

$$ext{sawtooth}(x) = \left\{egin{array}{cc} rac{1}{2}(\pi-x) & 0 < x \leq \pi, \ rac{1}{2}(-\pi-x) & -\pi \leq x < 0, \ 0 & x = 0. \end{array}
ight.$$

Theorem. The sawtooth wave has Fourier sine series

$$ext{sawtooth}(x) = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx.$$

Triangular Wave

Definition. The triangular wave is the even 2π -periodic function defined on $-\pi \leq x \leq \pi$ by the formula

$$ext{twave}(x) = \left\{egin{array}{cc} \pi - x & 0 < x \leq \pi, \ \pi + x & -\pi \leq x \leq 0. \end{array}
ight.$$

Theorem. The triangular wave has Fourier cosine series

$$ext{twave}(x) = rac{\pi}{2} + rac{4}{\pi} \sum_{k=0}^\infty rac{1}{(2k+1)^2} \cos(2k+1)x.$$

ParsevaL's Identity and Bessel's Inequality _____

Theorem. (Bessel's Inequality)

$$a_0^2 + rac{1}{2}\sum_{n=1}^\infty ig(a_n^2 + b_n^2ig) \leq rac{1}{2T}\int_{-T}^T |f(x)|^2 dx$$

Theorem. (Parseval's Identity)

$$rac{1}{2T}\int_{-T}^{T}|f(x)|^{2}dx=a_{0}^{2}+rac{1}{2}\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}
ight)$$

Theorem. Parseval's identity for the sawtooth function implies

$$rac{\pi^2}{12} = rac{1}{2}\sum_{n=1}^\infty rac{1}{n^2}$$

Complex Fourier Series _

Definition. Let f(x) be 2T-periodic and piecewise smooth. The complex Fourier series of f is

$$\sum_{n=-\infty}^{\infty}c_ne^{rac{in\pi x}{T}}, \hspace{1em} c_n=rac{1}{2T}\int_{-T}^{T}f(x)e^{rac{-in\pi x}{T}}dx$$

Theorem. The complex series converges to f(x) at points of continuity of f and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

Theorem. (Complex Parseval Identity)

$$rac{1}{2T}\int_{-T}^T |f(x)|^2 dx = \sum_{n=-\infty}^\infty |c_n|^2$$

Dirichlet Kernel and Convergence

Theorem. (Dirichlet Kernel Identity)

$$rac{1}{2}+\cos u+\cos 2u+\cdots+\cos nu=rac{\sin \left(\left(n+rac{1}{2}
ight) u
ight) }{2\sin \left(rac{1}{2}u
ight) }$$

Theorem. (Riemann-Lebesgue)

For piecewise continuous $g(x), \lim_{N o \infty} \int_{-\pi}^{\pi} g(x) \sin(Nx) dx = 0.$

Proof: Integration theory implies it suffices to establish the result for smooth g. Integrate by parts to obtain $\frac{1}{n}(g(-\pi) - g(\pi))(-1)^n + \frac{1}{n}\int_{-\pi}^{\pi} g(x)\cos(nx)dx$. Letting $n \to \infty$ implies the result.

Theorem. Let f(x) be 2π -periodic and smooth on the whole real line. Then the Fourier series of f(x) converges uniformly to f(x).

Convergence Proof _____

STEP 1. Let $s_N(x)$ denote the Fourier series partial sum. Using Dirichlet's kernel formula, we verify the identity

$$f(x) - s_N(x) = rac{1}{\pi} \int_{x-\pi}^{x+\pi} (f(x) - f(x+w)) \left(rac{\sin((N+1/2)w)}{2\sin(w/2)}
ight) dw$$

STEP 2. The integrand *I* is re-written as

$$I = rac{f(x) - f(x + w)}{w} rac{w}{2\sin(w/2)} \sin((N + 1/2)w).$$

STEP 3. The function $g(w) = \frac{f(x) - f(x+w)}{w} \frac{w}{\sin(w/2)}$ is piecewise continuous. Apply the Riemann-Lebesgue Theorem to complete the proof of the theorem.

Gibbs' Phenomena

Engineering Interpretation: The graph of $oldsymbol{f}(x)$ and the graph of

 $a_0 + \sum_{n=1}^N (a_n \cos nx + b_n \sin nx)$

are identical to pixel resolution, provided N is sufficiently large. Computers can therefore graph f(x) using a truncated Fourier series.

If f(x) is only piecewise smooth, then pointwise convergence is still true, at points of continuity of f, but uniformity of the convergence fails near discontinuities of f and f'. Gibbs discovered the fixed-jump artifact, which appears at discontinuities of f.