## Fourier Series

- Fourier Sine Series
- Fourier Cosine Series
- Fourier Series
- Convergence of Fourier Series for 2T-Periodic Functions
- Convergence of Half-Range Expansions: Cosine Series
- Convergence of Half-Range Expansions: Sine Series
- Sawtooth Wave
- Triangular Wave
- Parseval's Identity and Bessel's Inequality
- Complex Fourier Series
- Dirichlet Kernel and Convergence


## Fourier Sine Series

$\qquad$
Definition. Consider the orthogonal system $\left\{\sin \left(\frac{n \pi x}{T}\right)\right\}_{n=1}^{\infty}$ on $[-T, T]$. A Fourier sine series with coefficients $\left\{b_{n}\right\}_{n=1}^{\infty}$ is the expression

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{T}\right)
$$

Theorem. A Fourier sine series $\boldsymbol{F}(\boldsymbol{x})$ is an odd $2 \boldsymbol{T}$-periodic function.
Theorem. The coefficients $\left\{b_{n}\right\}_{n=1}^{\infty}$ in a Fourier sine series $\boldsymbol{F}(\boldsymbol{x})$ are determined by the formulas (inner product on $[-\boldsymbol{T}, \boldsymbol{T}]$ )

$$
b_{n}=\frac{\left\langle F, \sin \left(\frac{n \pi x}{T}\right)\right\rangle}{\left\langle\sin \left(\frac{n \pi x}{T}\right), \sin \left(\frac{n \pi x}{T}\right)\right\rangle}=\frac{2}{T} \int_{0}^{T} F(x) \sin \left(\frac{n \pi x}{T}\right) d x
$$

## Fourier Cosine Series

Definition. Consider the orthogonal system $\left\{\cos \left(\frac{m \pi x}{T}\right)\right\}_{m=0}^{\infty}$ on $[-T, T]$. A Fourier cosine series with coefficients $\left\{a_{m}\right\}_{m=0}^{\infty}$ is the expression

$$
F(x)=\sum_{m=0}^{\infty} a_{m} \cos \left(\frac{m \pi x}{T}\right)
$$

Theorem. A Fourier cosine series $\boldsymbol{F}(\boldsymbol{x})$ is an even $\mathbf{2 T}$-periodic function.
Theorem. The coefficients $\left\{a_{m}\right\}_{m=0}^{\infty}$ in a Fourier cosine series $\boldsymbol{F}(\boldsymbol{x})$ are determined by the formulas (inner product on $[-\boldsymbol{T}, \boldsymbol{T}]$ )

$$
a_{m}=\frac{\left\langle F, \cos \left(\frac{m \pi x}{T}\right)\right\rangle}{\left\langle\cos \left(\frac{m \pi x}{T}\right), \cos \left(\frac{m \pi x}{T}\right)\right\rangle}= \begin{cases}\frac{2}{T} \int_{0}^{T} F(x) \cos \left(\frac{m \pi x}{T}\right) d x & m>0 \\ \frac{1}{T} \int_{0}^{T} F(x) d x & m=0\end{cases}
$$

## Fourier Series

Definition. Consider the orthogonal system $\left\{\cos \left(\frac{m \pi x}{T}\right)\right\}_{m=0}^{\infty},\left\{\sin \left(\frac{n \pi x}{T}\right)\right\}_{n=1}^{\infty}$, on $[-T, T]$. A Fourier series with coefficients $\left\{a_{m}\right\}_{m=0}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ is the expression

$$
F(x)=\sum_{m=0}^{\infty} a_{m} \cos \left(\frac{m \pi x}{T}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{T}\right)
$$

Theorem. A Fourier series $\boldsymbol{F}(\boldsymbol{x})$ is a $\mathbf{2 T}$-periodic function.
Theorem. The coefficients $\left\{a_{m}\right\}_{m=0}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ in a Fourier series $\boldsymbol{F}(\boldsymbol{x})$ are determined by the formulas (inner product on $[-\boldsymbol{T}, \boldsymbol{T}]$ )

$$
\begin{gathered}
a_{m}=\frac{\left\langle F, \cos \left(\frac{m \pi x}{T}\right)\right\rangle}{\left\langle\cos \left(\frac{m \pi x}{T}\right), \cos \left(\frac{m \pi x}{T}\right)\right\rangle}= \begin{cases}\frac{1}{T} \int_{-T}^{T} F(x) \cos \left(\frac{m \pi x}{T}\right) d x & m>0 \\
\frac{1}{2 T} \int_{-T}^{T} F(x) d x & m=0\end{cases} \\
b_{n}=\frac{\left\langle F, \sin \left(\frac{n \pi x}{T}\right)\right\rangle}{\left\langle\sin \left(\frac{n \pi x}{T}\right), \sin \left(\frac{n \pi x}{T}\right)\right\rangle}=\frac{1}{T} \int_{-T}^{T} F(x) \sin \left(\frac{n \pi x}{T}\right) d x .
\end{gathered}
$$

## Convergence of Fourier Series for 2T-Periodic Functions

The Fourier series of a $2 \boldsymbol{T}$-periodic piecewise smooth function $\boldsymbol{f}(\boldsymbol{x})$ is

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{T}\right)+b_{n} \sin \left(\frac{n \pi x}{T}\right)\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{2 T} \int_{-T}^{T} f(x) d x \\
a_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \cos \left(\frac{n \pi x}{T}\right) d x \\
b_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \sin \left(\frac{n \pi x}{T}\right) d x
\end{gathered}
$$

The series converges to $f(x)$ at points of continuity of $f$ and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

## Convergence of Half-Range Expansions: Cosine Series

The Fourier cosine series of a piecewise smooth function $f(x)$ on $[0, T]$ is the even $2 \boldsymbol{T}$ periodic function

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{T}\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{T} \int_{0}^{T} f(x) d x \\
a_{n}=\frac{2}{T} \int_{0}^{T} f(x) \cos \left(\frac{n \pi x}{T}\right) d x
\end{gathered}
$$

The series converges on $\mathbf{0}<\boldsymbol{x}<\boldsymbol{T}$ to $\boldsymbol{f}(\boldsymbol{x})$ at points of continuity of $\boldsymbol{f}$ and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

## Convergence of Half-Range Expansions: Sine Series

$\qquad$
The Fourier sine series of a piecewise smooth function $f(x)$ on $[0, T]$ is the odd $2 T$ periodic function

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{T}\right)
$$

where

$$
b_{n}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{n \pi x}{T}\right) d x
$$

The series converges on $\mathbf{0}<\boldsymbol{x}<\boldsymbol{T}$ to $\boldsymbol{f}(\boldsymbol{x})$ at points of continuity of $\boldsymbol{f}$ and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

## Sawtooth Wave

Definition. The sawtooth wave is the odd $2 \boldsymbol{\pi}$-periodic function defined on $-\boldsymbol{\pi} \leq \boldsymbol{x} \leq$ $\pi$ by the formula

$$
\operatorname{sawtooth}(x)=\left\{\begin{array}{lr}
\frac{1}{2}(\pi-x) & 0<x \leq \pi \\
\frac{1}{2}(-\pi-x) & -\pi \leq x<0 \\
0 & x=0
\end{array}\right.
$$

Theorem. The sawtooth wave has Fourier sine series

$$
\operatorname{sawtooth}(x)=\sum_{n=1}^{\infty} \frac{1}{n} \sin n x
$$

Triangular Wave $\qquad$
Definition. The triangular wave is the even $2 \pi$-periodic function defined on $-\pi \leq$ $x \leq \pi$ by the formula

$$
\operatorname{twave}(x)=\left\{\begin{array}{rr}
\pi-x & 0<x \leq \pi \\
\pi+\boldsymbol{x} & -\pi \leq \boldsymbol{x} \leq 0
\end{array}\right.
$$

Theorem. The triangular wave has Fourier cosine series

$$
\operatorname{twave}(x)=\frac{\pi}{2}+\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos (2 k+1) x
$$

## ParsevaL's Identity and Bessel's Inequality

Theorem. (Bessel's Inequality)

$$
a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{1}{2 T} \int_{-T}^{T}|f(x)|^{2} d x
$$

Theorem. (Parseval's Identity)

$$
\frac{1}{2 T} \int_{-T}^{T}|f(x)|^{2} d x=a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Theorem. Parseval's identity for the sawtooth function implies

$$
\frac{\pi^{2}}{12}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

## Complex Fourier Series

Definition. Let $f(\boldsymbol{x})$ be $\mathbf{2 T}$-periodic and piecewise smooth. The complex Fourier series of $\boldsymbol{f}$ is

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n \pi x}{T}}, \quad c_{n}=\frac{1}{2 T} \int_{-T}^{T} f(x) e^{\frac{-i n \pi x}{T}} d x
$$

Theorem. The complex series converges to $\boldsymbol{f}(\boldsymbol{x})$ at points of continuity of $\boldsymbol{f}$ and to $\frac{f(x+)+f(x-)}{2}$ otherwise.

Theorem. (Complex Parseval Identity)

$$
\frac{1}{2 T} \int_{-T}^{T}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}
$$

## Dirichlet Kernel and Convergence

$\qquad$
Theorem. (Dirichlet Kernel Identity)

$$
\frac{1}{2}+\cos u+\cos 2 u+\cdots+\cos n u=\frac{\sin \left(\left(n+\frac{1}{2}\right) u\right)}{2 \sin \left(\frac{1}{2} u\right)}
$$

Theorem. (Riemann-Lebesgue)
For piecewise continuous $g(x), \lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} g(x) \sin (N x) d x=0$.
Proof: Integration theory implies it suffices to establish the result for smooth $g$. Integrate by parts to obtain $\frac{1}{n}(g(-\pi)-g(\pi))(-1)^{n}+\frac{1}{n} \int_{-\pi}^{\pi} g(x) \cos (n x) d x$. Letting $n \rightarrow \infty$ implies the result.

Theorem. Let $f(x)$ be $2 \pi$-periodic and smooth on the whole real line. Then the Fourier series of $f(\boldsymbol{x})$ converges uniformly to $f(\boldsymbol{x})$.

## Convergence Proof

$\qquad$
STEP 1. Let $s_{N}(\boldsymbol{x})$ denote the Fourier series partial sum. Using Dirichlet's kernel formula, we verify the identity

$$
f(x)-s_{N}(x)=\frac{1}{\pi} \int_{x-\pi}^{x+\pi}(f(x)-f(x+w))\left(\frac{\sin ((N+1 / 2) w)}{2 \sin (w / 2)}\right) d w
$$

STEP 2. The integrand $\boldsymbol{I}$ is re-written as

$$
I=\frac{f(x)-f(x+w)}{w} \frac{w}{2 \sin (w / 2)} \sin ((N+1 / 2) w)
$$

STEP 3. The function $g(w)=\frac{f(x)-f(x+w)}{w} \frac{w}{\sin (w / 2)}$ is piecewise continuous. Apply the Riemann-Lebesgue Theorem to complete the proof of the theorem.

## Gibbs' Phenomena

Engineering Interpretation: The graph of $\boldsymbol{f}(\boldsymbol{x})$ and the graph of $a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
are identical to pixel resolution, provided $\boldsymbol{N}$ is sufficiently large. Computers can therefore graph $f(x)$ using a truncated Fourier series.
If $\boldsymbol{f}(\boldsymbol{x})$ is only piecewise smooth, then pointwise convergence is still true, at points of continuity of $f$, but uniformity of the convergence fails near discontinuities of $f$ and $f^{\prime}$. Gibbs discovered the fixed-jump artifact, which appears at discontinuities of $\boldsymbol{f}$.

