
Mathematics 5410

Phase Diagrams

Example. Plot the phase diagram of the linear dynamical system

x′ = −2x + 3y, y′ = −3x − 2y.

Solution: The Maple V.4 code which does the plot appears below.

restart:with(DEtools):

h:=0.2:k:=0.2:

de:=[diff(x(t),t)=-2*x(t)+3*y(t),

diff(y(t),t)=-3*x(t)-2*y(t)]:

vars:=[x(t),y(t)]:

inits:=[seq(seq([0,i*h,j*k],i=-2..2),j=-2..2)]:

dsolve(de,vars);

phaseportrait(de,vars,t=0..2*Pi,inits);

Problem 1. Plot a phase diagram for the matrix systems X ′ = AX,
given matrix A below, and classify as center, stable spiral, unstable spiral,
proper node, improper node, saddle. Subdivide the proper nodes into the
two cases deficient node and star node, as in Borrelli–Coleman, page 389.

A1 =

(

−2 0
0 −2

)

, A2 =

(

2 0
0 2

)

, A3 =

(

−2 0
0 −1

)

,

A4 =

(

2 0
0 1

)

, A5 =

(

−2 0
0 1

)

, A6 =

(

−2 1
0 −2

)

,

A7 =

(

2 1
0 2

)

, A8 =

(

0 2
−2 0

)

, A9 =

(

1 2
−2 1

)

,

A10 =

(

−1 2
−2 −1

)

.

Problem 2. Reproduce the soft spring phase diagram for (see Borrelli–
Coleman page 153)

x′ = y, y′ = −10x + 0.2x3 − 0.2y − 9.8.

Classify the equilibria (see Borrelli–Coleman page 389)

(−1, 0), ((1 +
√

197)/2, 0), ((1 −
√

197)/2, 0).

Hint: Use after the inits entry, the options



x=-12.5..12.5, y=-25..25,

arrows=none, stepsize=0.05

to make a finer plot without the direction field. Read the maple help on
phaseportrait. The object is to redefine inits in the example above.
There are about 12 significant initial conditions to plot, based upon Figure
3.1.2, page 153. Choose the three equilibria for a start, then add others until
the figure matches the one in the text.

Problem 3. Consider the soft spring phase diagram for (see Borrelli–
Coleman page 153)

x′ = y, y′ = −10x + 0.2x3 − 0.2y − 9.8.

Make three individual phase diagrams for each of the three linearized equa-
tions about the equilibrium points

(−1, 0), ((1 +
√

197)/2, 0), ((1 −
√

197)/2, 0).

The linearized differential equations about these equilibria are (see Borrelli–
Coleman, page 154, for the first one):

x′ = y, y′ = −9.4(x + 1) − 0.2y,

x′ = y, y′ = (197 + 3
√

197)(x − 1/2 −
√

197/2)/10 − 0.2y,

x′ = y, y′ = (197 − 3
√

197)(x − 1/2 +
√

197/2)/10 − 0.2y.

Problem 4. Justify mathematically the linearized differential equations
given in Problem 3. This work is to be handwritten and full of detail.

Taylor’s Theorem. Let F (X) be a function from Rn into Rn, twice
continuously differentiable. Let X0 be a given point. Then

F (X) = F (x0) + J(X − X0) + R

where J is the Jacobian matrix of F at X = X0 and the remainder R
satisfies |R| ≤ K|X − X0|2 as X approaches X0.

The Jacobian matrix has entries ∂Fi/∂xj , that is, the columns of J are
the vector partials ∂xj

F (X0).

Linearized Equation. At an equilibrium point X0, the dynamical sys-
tem X ′ = F (X) has linearization X ′ = J(X−X0). This equation is formally
obtained from its nonlinear counterpart X ′ = F (X) by dropping the Taylor
remainder and observing that, by assumption, F (X0) = 0.
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Example. Compute the Jacobian matrix at X0 = (−1, 0) for the vector
function

F (x, y) =

(

y
−10x + 0.2x3 − 0.2y − 9.8

)

and find the linearized system for X ′ = F (X).

Solution: The partials are

∂xF = ∂x

(

y
−10x + 0.2x3 − 0.2y − 9.8

)

=

(

0
−10 + 0.6x2

)

=

(

0
−10 + 0.6(−1)2

)

=

(

0
−9.4

)

,

∂yF = ∂y

(

y
−10x + 0.2x3 − 0.2y − 9.8

)

=

(

1
−0.2

)

,

J =

(

0 1
−9.4 −0.2

)

.

The linearized system is X ′ = J(X − X0), or

(

x′

y′

)

=

(

0 1
−9.4 −0.2

)(

x + 1
y

)

.
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