Midterm Exam 3 - Ver 2: 10:45
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1. (ch4) Complete enough of the following to add to 100%.

(a) [100%)] Let V be the vector space of all continuous functions defined on —1 < z < 1. Define S to be

the set of all functions f(z) in V such that f(0) = ffl (0.5 + |z/2|)dz, f(0.5) = 0. Prove that S is a
subspace of V, by using the Subspace Criterion.

(b) [30%] Let V be the set of all 3 x 1 column vectors x with components 1, 2, 3. Assume the
usual R3 rules for addition and scalar multiplication. Let S be the subset of S defined by the equations
2a-x = b -x, where a and b are vectors in V. Prove that § is a subspace of V.

(c) [70%)] Solve for the unknowns 1, 2, 3, z4 in the system of equations below by augmented matrix
RREF methods, showing all details. Report the vector form of the general solution.
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Use this page to start your solution. Staple extra pages as needed.
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, 106
. (ch5) Complete (a), (b) and either (¢) or (d). Do not do both (c) and (d).

(a) [30%)] Given z”(t) + 22’ (t) + 3z(t) = 0, which represents a damped spring-mass system with m = 1,
¢ = 2, k = 3, solve the differential equation [20%)] and classify the answer as over-damped, critically
damped or under-damped [10%].

(b) [10%] Both undetermined coefficients and variation of parameters can solve z” + z' = e™*. Without
actually solving, is one method faster? Explain your reasoning.

(c) [60%] Find by undetermined coefficients the steady-state periodic solution for the equation z" +
2x' + 5z = 5sin(3t).

(d) [60%)] If you did (c) above, then skip thls one! Find by variation of parameters a particular solution
z, for the equation z” + 22’ + 5z = ¢! * cot(t2). To save time, don’t try to evaluate integrals (it’s

impossible).
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. (ch5) Complete all parts below.

(a) [75%] A non-homogeneous linear differential equation with constant coefficients has right side f(z) =
— 4 943 _ ¢ + 54z cos z and characteristic equation r2(r 4+1)3(r? 4+4) = 0. Determine the corrected
trlal solution for y, according to the method of undetermined coefficients. To save time, do not evaluate

the undetermined coefficients (that is, do undetermined coefficient steps and . but skip steps
and )! Undocumented detail or guessing earns no credit.

(b) [25%)] Using the recipe for higher order constant-coefficient differential equations, write out the
general solution when the characteristic equation is (r3 + 4r)(r? + 2r)(r? 4+r) = 0.
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4. (ch6) Complete all of the items below.

(a) [30%] Find the eigenvalues of the matrix A = To save time, do not find
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(b) [70%)] Given A= | 0 4 1 |, then there exists an invertible matrix P and a diagonal matrix D
01 4

such that AP = PD. Which of the following is a possible column of P?
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5. (ch6) Complete all parts below.

Consider the 3 x 3 matrix

Already computed are eigenpairs
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(a) [40%)] Compute and then display an invertible matrix P and a diagonal matrix D such that AP = PD.
(c) [30%)] Describe precisely, and explicitly for A above, Fourier’s model for the computation of Ax.

(c) [30%)] Display the vector general solution x(¢) of the linear differential system x' = Ax.
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