
Independent Particles in a Dynamical
Random Environment

Mathew Joseph, Firas Rassoul-Agha and Timo Seppäläinen

Abstract We study themotion of independent particles in a dynamical random envi-
ronment on the integer lattice. The environment has a product distribution. For the
multidimensional case, we characterize the class of spatially ergodic invariant mea-
sures. These invariant distributions are mixtures of inhomogeneous Poisson product
measures that depend on the past of the environment. We also investigate the cor-
relations in this measure. For dimensions one and two, we prove convergence to
equilibrium from spatially ergodic initial distributions. In the one-dimensional sit-
uation we study fluctuations of the net current seen by an observer traveling at a
deterministic speed. When this current is centered by its quenched mean its limit
distributions are the same as for classical independent particles.

F. Rassoul-Aghawas partially supported byNSF grant DMS-1407574 and Simons Foundation grant
306576.
M. Joseph and F. Rassoul-Agha were partially supported by NSF grant DMS-0747758.
T. Seppäläinen was partially supported by NSF grants DMS-0701091, DMS-1003651, DMS-
1306777 and DMS-1602486, by Simons Foundation grant 338287, and by the Wisconsin Alumni
Research Foundation.

M. Joseph
Indian Statistical Institute, Bangalore, 8th Mile Mysore Road, RVCE Post,
Bengaluru 560059, Karnataka, India
e-mail: m.joseph@isibang.ac.in

F. Rassoul-Agha (B)
Department of Mathematics, University of Utah, 155 South 1400 East,
Salt Lake City, UT 84112, USA
e-mail: firas@math.utah.edu
URL: http://www.math.utah.edu/~firas

T. Seppäläinen
Mathematics Department, University of Wisconsin-Madison,
Van Vleck Hall 480 Lincoln Dr., Madison, WI 53706-1388, USA
e-mail: seppalai@math.wisc.edu
URL: http://www.math.wisc.edu/~seppalai

© Springer Nature Switzerland AG 2019
P. Friz et al. (eds.), Probability and Analysis in Interacting Physical
Systems, Springer Proceedings in Mathematics & Statistics 283,
https://doi.org/10.1007/978-3-030-15338-0_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15338-0_4&domain=pdf
mailto:m.joseph@isibang.ac.in
mailto:firas@math.utah.edu
http://www.math.utah.edu/~firas
mailto:seppalai@math.wisc.edu
http://www.math.wisc.edu/~seppalai
https://doi.org/10.1007/978-3-030-15338-0_4


76 M. Joseph et al.

Keywords Random walk in random environment · Particle current ·
Limit distribution · Fractional brownian motion · EW universality

2000 Mathematics Subject Classification. 60K35 · 60K37

1 Introduction and Results

This paper studies particles that move on the integer lattice Z
d . Particles interact

through a common environment that specifies their transition probabilities in space
and time. The environment is picked randomly at the outset and fixed for all time.
Given the environment, particles evolve independently, governed by the transition
probabilities specified by the environment.

We have two types of results. First we characterize those invariant distributions
for the particle process that satisfy a spatial translation invariance. These turn out to
be mixtures of inhomogeneous Poisson product measures that depend on the past of
the environment. Poisson is expected, in view of the classical result that a system
of independent random walks has a homogeneous Poisson invariant distribution [5,
Sect. 8.5]. For d = 1, 2, we use coupling ideas from [7] (as presented in [18]) to
prove convergence to this equilibrium from spatially invariant initial distributions.

In the one-dimensional case we study fluctuations of the particle current seen by
an observermoving at the characteristic speed. In the present setting the characteristic
speed is simply the mean speed v of the particles. More generally, the characteristic
speed is the derivative H ′(ρ) of the flux H as a function of particle density ρ. The
flux H(ρ) is the mean rate of flow across a fixed bond of the lattice when the system
is stationary with density ρ. For independent particles H(ρ) = vρ.

It is expected, and supported by known rigorous results, that the current fluctua-
tions are of order n1/4 with Gaussian limits if the macroscopic flux H is linear, and
of order n1/3 with Tracy-Widom type limits if the flux H is strictly convex or con-
cave. In statistical physics terminology, the former is the Edwards-Wilkinson (EW)
universality class, and the latter the Kardar-Parisi-Zhang (KPZ) universality class.
(See [3] for the physics perspective on these matters, and [4, 20] for mathematical
reviews). Our motivation is to investigate the effect of a random environment in the
EW class. We find that, when the current is centered by its quenched mean and the
environment is averaged out, the fluctuation picture in the dynamical environment
is the same as that for classical independent random walks [10, 19]. Consistent with
EW universality, the current fluctuations have magnitude t1/4 and occur on a spatial
scale of t1/2 where t denotes the macroscopic time variable.

There is an interesting contrast with the case of static environment investigated
in [15]. In the static environment, the quenched mean of the current has fluctuations
of magnitude t1/2 and converges weakly to a Brownian motion. Our results suggest
that under a dynamic environment the quenched mean of the current has fluctua-
tions of magnitude t1/4 and that when the particle system is stationary in time these
fluctuations are governed by a fractional Brownianmotion with Hurst parameter 1/4.

firasrassoul@gmail.com
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Other work on the motion of independent particles in a random environment
includes articles [9, 14].

We turn to a description of the process and then the results.

1.1 The Particle Process and Its Invariant Distributions

The particles follow independent random walks in a common dynamical random
environment (RWRE). More precisely, they move in a space-time environment ω =
(ωx,s)(x,s)∈Zd×Z indexed by a discrete time variable s and a discrete space variable x .
The environment at space-time point (x, s) ∈ Z

d × Z is a vector ωx,s = (ωx,s(z) :
z ∈ Z

d , |z| � R) of jump probabilities that satisfy

0 � ωx,s(z) � 1 and
∑

z∈Zd : |z|�R

ωx,s(z) = 1. (1.1)

R is a fixed finite constant that specifies the range of jumps. From a space-time
point (x, s) admissible jumps are to points (y, s + 1) such that |y − x | � R. In
environment ω the transition probabilities governing the motion of a Z

d -valued walk
X • = (Xs)s∈Z+ are

Pω[Xs+1 = y | Xs = x] = πω
s,s+1(x, y) ≡ ωx,s(y − x). (1.2)

Pω is the quenched probability measure on the path space of the walk X •. The envi-
ronment is “dynamical” because at each time s the particle sees a new environment
ω̄s = (ωx,s : x ∈ Z

d).
(�,S) denotes the space of environments ω satisfying the above assumptions,

endowed with the product topology and its Borel σ-algebra S. The environment
restricted to levels s ∈ {m, . . . , n} is denoted by

ω̄m,n = (ω̄s)m�s�n = (ωx,s : m � s � n, x ∈ Z
d).

Environments at levels generate σ-algebras Sm,n = σ{ω̄m,n}. In these formulations
m = −∞ or n = ∞ are also possible. Tx,s is the shift on �, that is (Tx,sω)y,t =
ωx+y,s+t .

Let P be a probability measure on � such that

the probability vectors (ωx,s)(x,s)∈Zd×Z are i.i.d. under P. (1.3)

We make two nondegeneracy assumptions. The first one guarantees that the
quenched walk is not degenerate:

P{ ∃ z ∈ Z
d : 0 < ω0,0(z) < 1 } > 0. (1.4)
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Denote the mean transition kernel by p(u) = Eπs,s+1(x, x + u). The second key
assumption is that

there does not exist x ∈ Z
d and an additive subgroup

G � Z
d such that

∑
z∈G p(x + z) = 1.

(1.5)

Another way to state assumption (1.5) is that the averaged walk has span 1, or that
it is aperiodic in Spitzer’s [22] terminology.

To create a system of particles, let {Xu, j
• : u ∈ Z

d , j ∈ N} denote a collection
of random walks on Z

d such that walk Xu, j
• starts at site u: Xu, j

0 = u. When the
environment ω is fixed, we use Pω to denote the joint quenched measure of the
walks {Xu, j

• }. Under Pω these walks move independently on Z
d and each walk

obeys transitions (1.2).
Further, assume given an initial configuration η = (η(u))u∈Zd of occupation

variables. Variable η(u) ∈ Z+ specifies the number of particles initially at site u.
Pω

η denotes the quenched distribution of the walks {Xu, j
• : u ∈ Z

d , 1 � j � η(u)}.
Occupation variables for all times s ∈ Z+ are then defined by

ηs(x) =
∑

u∈Zd

η(u)∑

j=1

1{Xu, j
s = x}, (x, s) ∈ Z

d × Z+.

When the initial configuration η = η0 has probability distribution ν wewrite Pω
ν (·) =∫

Pω
η (·) ν(dη) for the quenched distribution of the process.
When the environment is averaged over we drop the superscriptω: for any event A

that involves thewalks andoccupationvariables, and any event B ⊆ �, Pν(A × B) =∫
B Pω

ν (A) P(dω).

It will be convenient to construct initial distributions ν = νω as functions of the
environment, so that the quenched process distribution is then Pω

νω (·) = ∫
Pω

η (·)
νω(dη). But then it will always be the case that νω depends only on the past ω̄−∞,−1

of the environment. Consequently the initial distribution νω and the quenched dis-
tribution of the walks Pω({Xx, j

• } ∈ · ) are independent under the product measure P

on the environment. The averaged process distribution is then

∫

�

Pω
νω (·) P(dω) =

∫

Z
Zd+

Pη(·) ν̄(dη) = Pν̄(·)

where ν̄(dη) = ∫
�

νω(dη) P(dω) is the averaged initial distribution. In particular,
in both quenched and averaged sense, the initial occupation variables {η0(x)} are
independent of the walks {Xx, j }.

The first result describes 
•
the invariant distributions of the occupation process ηt = 

(ηt (x))x∈Zd . The starting point is an invariant distribution for the environment process 
seen by a tagged particle: this is the process TXn ,nω where X • denotes a walk that starts 
at the origin. A familiar martingale argument and Green function bounds (Proposition
3.1 in Sect. 3 below) show the existence of an S−∞,−1-measurable density function
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f on � such that E( f ) = 1, E( f 2) < ∞, and the probability measure P∞(dω) =
f (ω) P(dω) is invariant for the Markov chain TXn ,nω.
For 0 � λ < ∞ let �λ denote the mean λ Poisson distribution on Z+. For 0 �

ρ < ∞ and ω ∈ � define the following inhomogeneous Poisson product probability
distribution on particle configurations η = (η(x))x∈Zd :

μρ,ω(dη) =
⊗

x∈Zd

�ρ f (Tx,0ω)
(
dη(x)

)
. (1.6)

(Such a measure is called a Cox process with random intensity ρ f (Tx,0ω)). Define
the averaged measure by

μρ =
∫

μρ,ω
P(dω). (1.7)

Theorem 1.1 Let the dimension d � 1. Consider independent particles on Z
d in

an i.i.d. space-time environment (as indicated in (1.3)), with bounded jumps, under
assumptions (1.4) and (1.5).

(a) For each 0 � ρ < ∞, μρ is the unique invariant distribution for the process η•

that is also invariant and ergodic under spatial translations and hasmean occupation∫
η(x) dμρ = ρ. Furthermore, the tail σ-field of the state space Z

Z
d

+ is trivial under
μρ, and under the path measure Pμρ the process η• is ergodic under time shifts.

(b) Suppose d = 1 or d = 2. Let ν be a probability distribution on Z
Z
d

+ that
is stationary and ergodic under spatial translations and has mean occupation ρ =∫

η(x) dν. Then if ν is the initial distribution for the process η•, the process converges
in distribution to the invariant distribution with density ρ: Pν{ηt ∈ ·} ⇒ μρ as t →
∞.

Part (b) of the theorem is restricted to d = 1, 2 because our proof uses recurrence
of random walks (see Proposition 2.2).

Two auxiliary Markov transitions q and q̄ on Z
d play important roles throughout

much of the paper:

q(x, y) =
∑

z∈Zd

E[ω0,0(z)ωx,0(z + y)]

=
{∑

z∈Zd E[ω0,0(z)ω0,0(z + y)] x = 0, y ∈ Z
d

∑
z∈Zd p(z)p(z + y − x) x 
= 0, y ∈ Z

d

(1.8)

and
q̄(x, y) = q̄(0, y − x) =

∑

z∈Zd

p(z)p(z + y − x). (1.9)

Think of q as a symmetric random walk whose transition probability is perturbed at
the origin, and of q̄ as the corresponding unperturbed homogeneous walk.
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For θ ∈ T
d = (−π,π]d define characteristic functions

φω(θ) =
∑

z

ω0,0(z)e
iθ·z, (1.10)

λ(θ) =
∑

z∈Zd

q(0, z)eiθ·z = E|φω(θ)|2 (1.11)

and
λ̄(θ) =

∑

z∈Zd

q̄(0, z)eiθ·z = |Eφω(θ)|2. (1.12)

(We use the bar notation for quantities associated with the homogeneous walk q̄, in
addition to a few other particular items such as ω̄s for the environment on level s. In
the case of λ̄(θ) this must not be confused with complex conjugation). Assumption
(1.5) implies that the random walk q̄ is not supported on a subgroup smaller than Z

d ,
hence λ̄(θ) < 1 for θ ∈ T

d \ {0} [22, p. 67, T7.1]. Define a constant β by

β = 1

(2π)d

∫

Td

1 − λ(θ)

1 − λ̄(θ)
dθ. (1.13)

The distribution q(0, z) is not degenerate by assumption (1.4) and hence λ(θ) is not
identically 1. Since also λ̄(θ) � λ(θ), we see that β ∈ (0, 1] is well-defined.

Under the invariant distribution μρ the covariance of the occupation variables is

Covμρ [η(0), η(m)] = ρ2Cov[ f (ω), f (Tm,0ω)] = ρ2E[ f (ω) f (Tm,0ω)] − ρ2, m ∈ Z
d .

(1.14)
The first equality above comes from the structure of μρ: given ω, the occupation
variables are independent with means Eμρ,ω [η(m)] = ρ f (Tm,0ω). Our next theorem
gives a formula for (1.14).

Theorem 1.2 Let d � 1. For m ∈ Z
d \ {0}

Cov[ f (ω), f (Tm,0ω)] = − β−1

(2π)d

∫

Td

cos(θ · m)
1 − λ(θ)

1 − λ̄(θ)
dθ (1.15)

and
Var[ f (ω)] = β−1 − 1. (1.16)

The compact analytic formulas (1.13) and (1.15) arise from probabilistic formulas
that involve the transitions q and q̄ and the potential kernel of q̄. The probabilistic
arguments are somewhat different in the recurrent (d � 2) and transient (d � 3)
cases. The reader can find these in Sect. 4.
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By the Riemann-Lebesgue lemma we have that

lim
m→∞ Cov[ f (ω), f (Tm,0ω)] = 0.

By computing the integral in (1.15) an interesting special case arises:

Corollary 1.3 For the simplest case where d = 1 and p(x) + p(x + 1) = 1 for
some x ∈ Z, the fixed time occupation variables in the stationary process are uncor-
related:

Cov[ f (ω), f (Tm,0ω)] = 0 for m 
= 0.

1.2 Limit of the Current Process

To study the particle current we restrict to dimension d = 1. Define the mean and
variance of the averaged walk by

v =
∑

x∈Z
xp(x) and σ2 =

∑

x∈Z
x2 p(x) − v2. (1.17)

For t ∈ R+ = [0,∞) and r ∈ R, let

Yn(t, r) =
∑

x>0

η0(x)∑

j=1

1{Xx, j
�nt� � �nvt� + �r√n� } −

∑

x�0

η0(x)∑

j=1

1{Xx, j
�nt� > �nvt� + �r√n� }.

(1.18)
Yn(t, r) represents the net right-to-left current of particles seen by amoving observer
who starts at the origin and travels to �nvt� + �r√n� in time �nt�.

We look at the current under the following assumptions. Given ω, initial occupa-
tion variables obey a productmeasure thatmay depend on the past of the environment,
but so that shifts are respected. Precisely,

given the environment ω, initial occupation variables (η0(x))x∈Z have
distribution μω(dη0) = ⊗

x∈Z
μω
x (dη0(x)) where μω

x is allowed to depend

measurably on ω̄−∞,−1. Furthermore,μω
x = μ

Tx,0ω
0 .

(1.19)

Let Pω denote the quenched distribution Pω
μω of initial occupation variables and

walks, and P = Pω(·)P(dω) the distribution over everything: particles, walks and
environments.

Make this moment assumption:

E[η0(0)2] < ∞. (1.20)
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Parameters that appear in the results are

ρ0 = E[η0(x)] and σ2
0 = E[Varω(η0(0))]. (1.21)

Next we describe the limiting process. Let Ẇ be space-time white noise cor-
responding and B a two-sided one-parameter Brownian motion on R, indepen-
dent of Ẇ . Let W be the two-parameter Brownian motion on R+ × R given by
W (t, r) = Ẇ ([0, t] × [0, r ]), if r > 0, andW (t, r) = −Ẇ ([0, t] × [r, 0]), if r < 0.
Define the process Z(t, r) as the unique mild solution of the stochastic heat equation
(see [25])

Zt = σ2

2
Zrr + √

ρ0 Ẇ , Z(0, r) = σ0B(r).

Process Z is given by

Z(t, r) = √
ρ0

∫∫

[0,t]×R

ϕσ2(t−s)(r − x) dW (s, x)

+ σ0

∫

R

ϕσ2t (r − x)B(x) dx,
(1.22)

where ϕν2(x) = (2πν2)−1/2 exp(−x2/2ν2) denotes the centered Gaussian density
with variance ν2, and �ν2(x) = ∫ x

−∞ ϕν2(y)dy the distribution function.
{Z(t, r) : t ∈ R+, r ∈ R} is a mean zero Gaussian process. Its covariance can be

expressed as follows: with

�ν2(x) = ν2ϕν2(x) − x
(
1 − �ν2(x)

)
(1.23)

define two covariance functions on (R+ × R) × (R+ × R) by

�1
(
(s, q), (t, r)

) = �σ2(t+s)(r − q) − �σ2|t−s|(r − q) (1.24)

and
�2
(
(s, q), (t, r)

) = �σ2s(−q) + �σ2t (r) − �σ2(t+s)(r − q). (1.25)

Then

E[Z(s, q)Z(t, r)] = ρ0�1
(
(s, q), (t, r)

) + σ2
0�2

(
(s, q), (t, r)

)
. (1.26)

(Boldface P and E denote generic probabilities and expectations not connected with 
the RWRE model).

The theorem we state is for the finite-dimensional distributions of the current 
process, scaled and centered by its quenched mean:

Y n (t, r) = n−1/4
{
Yn (t, r) − Eω[Yn (t, r)]

}
.
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Fix any N ∈ N, timepoints 0 < t1 < t2 < · · · < tN ∈ R+, space points r1, r2, . . . , rN
∈ R and an N -vector θ = (θ1, . . . , θN ) ∈ R

N . Form the linear combinations

Y n(θ) =
N∑

i=1

θi Y n(ti , ri ) and Z(θ) =
N∑

i=1

θi Z(ti , ri ).

Theorem 1.4 Consider independent particles on Z in an i.i.d. space-time environ-
ment with bounded jumps, under assumptions (1.3) and (1.5). Let the ω-dependent
initial distribution satisfy (1.19) and (1.20). With definitions as above, quenched
characteristic functions converge in L1(P):

lim
n→∞ E

∣∣Eω(eiY n(θ)) − E(ei Z(θ))
∣∣ = 0. (1.27)

In particular, under the averaged distribution P, convergence in distribution holds
for the R

N -valued vectors as n → ∞:

(
Y n(t1, r1),Y n(t2, r2), · · · , Y n(tN , rN )

) ⇒ (
Z(t1, r1), Z(t2, r2), · · · , Z(tN , rN )

)
.

While we do not have a quenched limit (convergence of distributions under a fixed
ω), limit (1.27) does imply that, if a quenched limit exists, it is the same as we have
found.

A special case of the above theorem is the stationary situation. The proof of the
following corollary comes by a direct computation using (1.26).

Corollary 1.5 Consider the same setting as in the previous theorem. If furthermore
variables η0 have conditional distribution (1.6), and more generally when σ2

0 = ρ0,
process Z(t, 0) has covariance

E[Z(s, 0)Z(t, 0)] = ρ0σ√
2π

(
√
s + √

t − √|t − s| ),

i.e. ρ0
−1σ−1√π/2 Z(t, 0) is a fractional Brownian motion with Hurst parameter 1/4.

The next two theorems are on fluctuations of the quenched mean process
EωYn (t, r) in the special case of one-dimensional random walks with admissible 
steps 0 and 1. Although we expect the result to hold for more general random 
walks, this is the only case for which we are able to characterize the fluctua-
tions. Let σ2

D = Var(ω0,0) and α = Eω0,0(1 − ω0,0). Note that v = p(1) = Eω0,0 
and σ2 = v(1 − v).

First, we consider the case of an initial configuration η0 with independent 
quenched means.
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Theorem 1.6 Let {η0(x) : x ∈ Z} be such that the quenched means {Eωη0(x) :
x ∈ Z} are independent with mean ρ0 and variance σ2

0 . Assume that there exists
ε > 0 such that supx E[|Eωη0(x)|2+ε] < ∞. Assume the η0-variables are inde-
pendent of the transition probabilities {ωx,t : (x, t) ∈ Z × Z+}. Then the finite-
dimensional marginals of the process {n−1/4Eω

(
Yn(t, r) − ρ0r

√
n
) : t � 0, r ∈ R}

converge weakly as n → ∞ to those of the unique mild solution to the stochastic
heat equation

zt = σ2

2
zrr + ρ0σD√

α
Ẇ , z(0, r) = σ0B(r),

where Ẇ is space-time white noise and B a two-sided Brownian, independent of Ẇ .

The above includes the case when η0 is independent of ω altogether. In that case,
σ0 = 0 and thus the initial condition becomes z(0, r) ≡ 0.

Next, we look at the stationary case. The reason this is different from the previous
theorem is that now the quenched means of the initial occupation variables are not
independent.

Theorem 1.7 Let {η0(x) : x ∈ Z
d} be distributed according to (1.6) with ρ = 1.

Assume the averaged probabilities p0 = p1 = 1/2 so that v = 1/2. Then for t �
s > 0 we have

lim
n→∞

1√
n

Cov
(
EωYn(s, 0), E

ωYn(t, 0)
) = 1

2
√
2π

(
1
4α

−1 − 1
)
(
√
t + √

s − √
t − s ).

The above limit matches the covariance structure of a constant (( 14α
−1 − 1)1/2/

(2π)1/4) times a fractional Brownian motion with Hurst parameter 1/4. Theorems
1.6 and 1.7 are proved in Sect. 6. At the end of that section, we explain whywe expect
the same limiting behavior in the setting of Theorem 1.7 as that of Theorem 1.6 and
how this would imply the fractional Brownian motion limit.

Further notational conventions N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, . . . }. Multi-
step transition probabilities from time s to time t > s + 1 are

πω
s,t (x, y) =

∑

u1,...,ut−s−1∈Zd

πω
s,s+1(x, u1)π

ω
s+1,s+2(u1, u2) · · · πω

t−1,t (ut−s−1, y).

We omit floor notation from time parameters, and so for the walk, X t = X�t� for real
t � 0. No jumps happen between integer times.

S denotes the set of all measures μ on (Z+)Z
d 
that are invariant under spatial 

translations. Se denotes the subset of S consisting of ergodic measures. I denotes 
the set of measures that are invariant for the particle evolution, that is μt = μS(t) = 
μ for all t ∈ Z+ (μt and μS(t) here denote the measure on configurations at time t 
when the initial measure on configurations is μ). E, Eω, E, Eη, E etc will denote 
expectations with respect to P, Pω, P, Pη, P, etc. Variances and covariances are 
denoted similarly. Constants C can change from term to term.
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2 Coupled Process

This section describes the coupling that will be used to prove Theorem 1.1. We
couple two processes ηt and ζt so that matched particles move together forever,
while unmatched particles move independently. To do this precisely, choose for each
space-time point (x, t) a collection �x,t = {v0, j

x,t , v
+, j
x,t , v

−, j
x,t : j ∈ N} of i.i.d. Z

d -
valued jump vectors from distribution ωx,t . Given initial configurations η0 and ζ0,
perform the following actions. At each site x set

ξ0(x) = η0(x) ∧ ζ0(x),β
+
0 (x) = (η0(x) − ζ0(x))

+, and β−
0 (x) = (η0(x) − ζ0(x))

−.

ξ0(x) is the number of matched particles, while β±
0 (x) count the unmatched (+)

and (−) particles. Move particles from each site x as follows: the ξ0(x) matched
particles jump to locations x + v

0, j
x,0 for j = 1, . . . , ξ0(x), the β+

0 (x) (+) particles

jump to locations x + v
+, j
x,0 for j = 1, . . . ,β+

0 (x), and the β−
0 (x) (−) particles jump

to locations x + v
−, j
x,0 for j = 1, . . . ,β−

0 (x). After all jumps from all sites have been
executed, match as many pairs of (+) and (−) particles at the same site as possible. 
This means that a (+−) pair together at the same site merges to create a single ξ-
particle at the same site. (For example, if after the jumps site y contains s ξ-particles, k
(+) particles and � (−) particles, then set ξ1(y) = s + k ∧ � and β1

±(y) = (k − �)±). 
Since particles are not labeled, it is immaterial which particular (+) particle merges
with a particular (−) particle. When this is complete we have defined the state
(ξ1(x), β1

+(x), β1
−(x))x∈Zd at time t = 1. Then repeat, utilizing the jump variables 

for time t = 1. And so on.
This produces a joint process (ξt , βt

+, βt
−) such that

ξt (x) = ηt (x) ∧ ζt (x), βt
+(x) = (ηt (x) − ζt (x))+, and βt

−(x) = (ηt (x) − ζt (x))−.

The η and ζ processes are recovered from

ηt (x) = ξt (x) + βt
+(x) and ζt (x) = ξt (x) + βt

−(x).

The definition has the effect that a matched pair of η and ζ particles stays forever 
together, while a pair of (+) and (−) particles together at a site annihilate each 
other and turn into a matched pair. If we are only interested in the evolution of the
discrepancies (βt

+, βt
−) we can discard all matched pairs as soon as they arise, and 

simply consider independently evolving (+) and (−) particles that annihilate each
other upon meeting.

If we denote by � = {�x,t : x ∈ Zd , t ∈ Z} the collection of jump variables, and 
by G0,t the function that constructs the values at the origin at time t :

(
ξt (0), βt

+(0), βt
−(0)

) = G0,t (η0, ζ0, �)
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then it is clear that the values at other sites x are constructed by applying this same
function to shifted input:

(
ξt (x),β

+
t (x),β−

t (x)
) = G0,t (θxη0, θxζ0, θx�). (2.1)

Here θx is a spatial shift: (θxη)(y) = η(x + y) and (θx�)y,t = �x+y,t for x, y ∈ Z
d .

In particular, if the initial distribution μ̃ of the pair (η0, ζ0) is invariant and ergodic
under the shifts θx , while {�x,t : x ∈ Z

d , t ∈ Z} are i.i.d. and independent of (η0, ζ0),
it follows first that the triple (η0, ζ0, �) is ergodic, and then from (2.1) that for each
fixed t the configuration (ξt ,β

+
t ,β−

t ) is invariant and ergodic under the shifts θx .
Let S̃, resp. S̃e, denote the set of spatially invariant, resp. ergodic, probability

distributions on pairs (η, ζ) of configurations of occupation variables.

Lemma 2.1 Let μ̃ ∈ S̃. The expectations Eμ̃[β+
t (x)] and Eμ̃[β−

t (x)] are indepen-
dent of x and nonincreasing in t.

Proof The independence of x is due to the shift-invariance from (2.1). That
Eμ̃[β±

t (x)] is nonincreasing in t follows from the fact that discrepancy particles
are not created, only annihilated. �

Proposition 2.2 Let d = 1 or 2. Suppose μ̃ ∈ S̃e. Let Eμ̃[η(0)] = ρ1 and Eμ̃[ζ(0)]
= ρ2. If ρ1 � ρ2, we have

Eμ̃[β−
t (0)] = Eμ̃[(ηt (0) − ζt (0))

−] → 0 as t → ∞.

Proof We already know from Lemma 2.1 that Eμ̃[β±
t (0)] cannot increase. To

get a contradiction let us assume that Eμ̃[β−
t (0)] � δ for all t and some δ >

0. Since Eμ̃[β+
t (0)] − Eμ̃[β−

t (0)] = Eμ̃[ηt (0)] − Eμ̃[ζt (0)] = ρ1 − ρ2 � 0, we also
have Eμ̃[β+

t (0)] � δ for all t .
At time 0, assign labels separately to the (+) and (−) particles from some

countable label sets J + and J − and denote the locations of these particles by
{w+

i (t), w−
j (t) : i ∈ J +, j ∈ J −}. Each (+) and (−) particle retains its label

throughout its lifetime. The lifetime of (+) particle j ∈ J + is

τ+
j = inf{t � 0 : w+

j is annihilated by a (−) particle}.

If τ+
j = ∞, then j is immortal. Similarly define τ−

j . Let

β±
0,t (x) =

∑

j

1{w±
j (0) = x, τ±

j > t}

denote the number of (±) particles initially at site x that live past time t .Wewould like
to claim that for a fixed t the configuration {(β+

0,t (x),β
−
0,t (x)) : x ∈ Z

d} is invariant
and ergodic under the spatial shifts θx . This will be true if the evolution is given by a
mapping F0,t so that (β

+
0,t (x),β

−
0,t (x)) = F0,t (θxη0, θxζ0, θx�) for all x ∈ Z

d . Such a
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mapping can be created by specifying precise rules for themovement and annihilation
of (+) and (−) particles that are naturally invariant under shifts. For example, we
can take J ± ⊂ Z and give the sites of Z

d some ordering. Label particles initially
in increasing order, so that i < j implies w±

i (0) � w±
j (0). Then at each time step

particles from a given site are distributed to their subsequent locations in increasing
order, and (+,−) pairs are matched beginning with lowest labels. Of course the
overall ordering of particles is not preserved, but this mechanism does not depend
on the absolute labels, only their ordering, and respects the spatial translations.

Then the ergodic theorem implies that

Eμ̃[β±
0,t (0)] = lim

n→∞
1

(2n + 1)d
∑

|x |�n

β±
0,t (x) a.s.

Here |x | is the �∞ norm: for a vector x = (x1, . . . , xd), |x | = max1�i�d |xi |. Since
particles take jumps of magnitude at most R,

δ � Eμ̃[β±
t (0)] = lim

n→∞
1

(2n + 1)d
∑

|x |�n

β±
t (x)

� lim
n→∞

1

(2n + 1)d
∑

|x |�n+Rt

β±
0,t (x) = Eμ̃[β±

0,t (0)].

The initial occupation numbers of immortal +/− particles are

β±
0,∞(x) = lim

t→∞ β±
0,t (x).

The limit exists by monotonicity. This limit produces again a functional relationship
of the type (2.1):

(
β+
0,∞(x),β−

0,∞(x)
) = lim

t→∞
(
β+
0,t (x),β

−
0,t (x)

) = lim
t→∞ F0,t (θxη0, θxζ0, θx�)

= F0,∞(θxη0, θxζ0, θx�).

Thereby {(β+
0,∞(x),β−

0,∞(x)) : x ∈ Z
d} is spatially invariant and ergodic.

By the ergodic theorem again

Eμ̃[β±
0,∞(0)] = lim

n→∞
1

(2n + 1)d
∑

|x |�n

β±
0,∞(x) a.s.

while by the monotone convergence theorem

Eμ̃[β±
0,∞(0)] = lim

t→∞ Eμ̃[β±
0,t (0)] � δ.
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We have shown that the assumption Eμ̃[β−
t (0)] � δ leads to the existence of

positive densities of immortal (+) and (−) particles. However, a situation like this
will never arise for d = 1 or 2, the reason being that any two particles on the lattice
will meet each other infinitely often. More precisely, fix any two particles and let
X+

• and X−
• denote the walks undertaken by these two particles. Then X+

• and X−
•

are two independent walks in a common environment ω. Let Yt = X+
t − X−

t . If we
average out the environment, then Yt is a Markov chain on Z

d with transition q(x, y)
given by (1.8). Away from the origin this is a symmetric random walk with bounded
steps, and hence recurrent when d = 1 or 2. Thus Yt = 0 infinitely often. We have
arrived at a contradiction and the proposition is proved. �

3 Invariant Measures

In this section we prove Theorem 1.1.We begin by deriving the well-known invariant
density for the environment process seen by a single tagged particle.

Proposition 3.1 There exists a function 0 � f < ∞ on � such that E f = 1,
E( f 2) < ∞, f (ω) is a function of ω̄−∞,−1, and

f (ω) =
∑

x∈Zd

f (Tx,−1ω)πω
−1,0(x, 0) P-almost surely. (3.1)

Proof For N ∈ Z+ define

fN (ω) =
∑

z∈Zd

πω
−N ,0(z, 0). (3.2)

fN (ω) is S−N ,−1-measurable and a martingale with E fN = 1. By the martingale
convergence theorem we can define

f (ω) = lim
N→∞ fN (ω) (P-almost sure limit).

Property (3.1) follows because all the sums involved are finite:

∑

x

f (Tx,−1ω)πω
−1,0(x, 0) = lim

N→∞
∑

x

fN (Tx,−1ω)πω
−1,0(x, 0)

= lim
N→∞

∑

z,x

πω
−N−1,−1(z, x)π

ω
−1,0(x, 0) = lim

N→∞
∑

z

πω
−N−1,0(z, 0)

= lim
N→∞ fN+1(ω) = f (ω).
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In Lemma 3.4 belowwe show the L2 boundedness of the sequence { fN }. This implies
that fN → f also in L2 and thereby implies the remaining statements E f = 1 and
E( f 2) < ∞. �

The following addresses the positivity of f .

Lemma 3.2 P( f > 0) = 1 if and only if there exists an x such that P{π0,1(0, x) >

0} = 1.

Proof If there does not exist an x as in the claim, then by independence of the
environment and the finite step-size assumption we see that

P{∀x : π−1,0(x, 0) = 0} > 0.

But then (3.1) implies that P( f = 0) > 0. Conversely, if there exists an x as in
the claim, then (3.1) implies that if f (ω) = 0 then f (Tx,−1ω) = 0. Shift-invariance
implies the two events are in fact equal, almost surely. This in turn implies that
{ f = 0} is a trivial event and since E[ f ] = 1 we have that f > 0 a.s. �

To prove the L2 estimate for fN we develop a Green function bound for the
Markov chain defined as the difference of two walks. Let Xx

t and X̃ y
t be two inde-

pendent walks in a common environmentω, started at x, y ∈ Z
d , and Yt = Xx

t − X̃ y
t .

Under the averaged measure Yt is a Markov chain on Z
d with transition probabilities

q(x, y) defined by (1.8). Yt can be thought of as a symmetric random walk on Z
d

whose transition has been perturbed at the origin. The corresponding homogeneous,
unperturbed random walk is Ȳt with transition probability q̄ in (1.9). Write Px and
P̄x for the path probabilities of Y• and Ȳ•. Define hitting times of 0 for both walks Yt
and Ȳt by

τ = inf{n � 1 : Yn = 0} and τ̄ = inf{n � 1 : Ȳn = 0}. (3.3)

Denote the k-step transition probabilities by qk(x, y) and q̄k(x, y).

Lemma 3.3 There exists a constant C < ∞ such that for all x ∈ Z
d and N ∈ N,

N∑

k=0

qk(x, 0) � C
N∑

k=0

q̄k(x, 0).

Proof Suppose we had the bound for x = 0. Then it follows for x 
= 0:
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N∑

k=0

qk(x, 0) = Ex

[ N∑

k=0

1{Yk=0}
]

= Ex

[ N∑

i=0

1{τ=i}
N∑

k=i

1{Yk=0}
]

=
N∑

i=0

Px (τ = i)
n−i∑

k=0

qk(0, 0) � C
N∑

i=0

P̄x (τ̄ = i)
n−i∑

k=0

q̄k(0, 0)

= C
N∑

k=0

q̄k(x, 0)

It remains to prove the result for x = 0. Let σ0 = 0 and

σ j+1 = inf{n > σ j : Yn = 0 and Yk 
= 0 for some k ∈ {σ j + 1, . . . , n − 1}}.

These are the successive times of arrivals to 0 following excursions away from 0.
Let Wj , j ≥ 0, be the durations of the sojourns at 0, in other words

Yn = 0 iff σ j ≤ n < σ j + Wj for some j ≥ 0.

Sojourns are geometric and independent of the past, so on the event {σ j < ∞},

E0(Wj |FY
σ j

) = 1

1 − q(0, 0)
.

Let JN = max{ j ≥ 0 : σ j ≤ N } mark the last sojourn at 0 that started by time N .
Then

E0

[ N∑

k=0

1{Yk = 0}
]

≤ E0

[ JN∑

j=0

Wj

]
=

∞∑

j=0

E0
[

1{σ j ≤ N }Wj
]

= 1

1 − q(0, 0)
E0(1 + JN ).

Assumption (1.4) guarantees that q(0, 0) < 1.
It remains to bound E0(1 + JN ) in terms of

∑N
k=0 q̄

k(0, 0). The key is that once
the Markov chain Yk has left the origin, it follows the same transitions as the homo-
geneous walk Ȳk until the next visit to 0. For z 
= 0 let

K z
N = inf{k � 1 : T z

1 + T z
2 + · · · + T z

k � N }

where the {T z
i } are i.i.d. with common distribution P̄z{τ̄ ∈ · }. Imagine constructing

the path Yk so that every step away from 0 is followed by an excursion of Ȳk that
ends at 0 (or continues forever if 0 is never reached). The step bound (1.1) implies
that P0{|Y1| � 2R} = 1. Then there is stochastic dominance that gives
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E0(JN ) �
∑

z 
=0 : |z|�2R

Ē(K z
N ). (3.4)

By T32.1 in Spitzer [22, p. 378], for z 
= 0

lim
n→∞

P̄z(τ̄ > n)

P̄0(τ̄ > n)
= ā(z) (3.5)

where the potential kernel ā is

ā(z) = lim
n→∞

{ n∑

k=0

q̄k(0, 0) −
n∑

k=0

q̄k(z, 0)
}
. (3.6)

By P30.2 in [22, p. 361] ā(z) > 0 for all z 
= 0 for d = 1, 2. For d � 3 by transience

ā(z) =
∞∑

k=0

q̄k(0, 0) −
∞∑

k=0

q̄k(z, 0) = (1 − F̄(z, 0))
∞∑

k=0

q̄k(0, 0) > 0

where F̄(z, 0) = P̄z{ Ȳn = 0 for some n � 1} < 1.
From (3.5) and ā(z) > 0, there exist 0 < c(z),C(z) < ∞ such that for all n,

c(z)P̄0(τ̄ > n) � P̄(T z
1 > n) � C(z)P̄0(τ̄ > n)

and hence
c(z)Ē0

[
τ̄ ∧ N

]
� Ē

[
T z
1 ∧ N

]
� C(z)Ē0

[
τ̄ ∧ N

]
.

By Wald’s identity and some simple bounds (see Exercice 4.4.1 in [6, Sect. 4.4])

N

Ē
(
T z
1 ∧ N

) � Ē
[
K z

N

]
� 2N

Ē
(
T z
1 ∧ N

) .

Let {τ̄i } be i.i.d. copies of τ̄ from (3.3) and put

MN = inf{k � 1 : τ̄1 + τ̄2 + · · · + τ̄k � N }.

Then we have a similar relation:

N

Ē0
(
τ̄ ∧ N

) � Ē0
[
MN

]
� 2N

Ē0
(
τ̄ ∧ N

)

Combining the above lines:

Ē
[
K z

N

]
� 2N

Ē
[
T z
1 ∧ N

] � 2N

c(z)Ē0
[
τ̄ ∧ N

] � 2

c(z)
Ē0
[
MN

]
. (3.7)
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Considering excursions of the Ȳ -walk away from 0,

Ē0
[
MN

]
� 1 +

N∑

k=0

q̄k(0, 0) � 2
N∑

k=0

q̄k(0, 0). (3.8)

The proof is now complete with a combination of (3.4), (3.7) and (3.8). �

From the previous lemma follows the L2 estimate for fN which completes the
proof of Proposition 3.1.

Lemma 3.4 There exists a constant C < ∞ such that E( f 2N ) � C for all N .

Proof By translations

E( f 2N ) =
∑

x,z

Eπω
−N ,0(x, 0)π

ω
−N ,0(z, 0)

=
∑

y

EPω{X y
N = X̃0

N } =
∑

y

qN (y, 0).

By the submartingale property E( f 2N ) is nondecreasing in N . Hence it suffices to
show the existence of a constant C such that

N∑

k=0

E( f 2k ) � C(N + 1) for all N . (3.9)

From above, by Lemma 3.3 and the spatial homogeneity of the Ȳ -walk,

N∑

k=0

E( f 2k ) =
N∑

k=0

∑

x

qk(x, 0) � C
N∑

k=0

∑

x

q̄k(x, 0)

= C
N∑

k=0

∑

x

q̄k(0, x) = C(N + 1). �

Property (3.1) implies that the probability measure P∞(dω) = f (ω) P(dω) is
invariant for the process TXn ,nω. Recall from (1.6) the product measure

μρ,ω(dη) =
⊗

x∈Zd

�ρ f (Tx,0ω)
(
dη(x)

)
(3.10)

where �λ is Poisson(λ) distribution. By the definition of f , μρ,ω depends on ω only 
through the levels ω̄ −∞,−1.

Lemma 3.5 The following holds for P-a.e. ω. Let η0 be μρ,ω-distributed. Then for 
all times t ∈ Z+, under the evolution in the environment ω, ηt is μρ,T0,t ω-distributed, 
and in particular independent of the environment ω̄ t at level t .
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Proof Consider the evolution under a fixedω. The claimmade in the lemma is true at
time t = 0 by the construction. Suppose it is true up to time t − 1. Then over x ∈ Z

d

the variables ηt−1(x) are independent Poisson variables with means ρ f (Tx,t−1ω).
Each particle at site x chooses its next position y independently with probabilities
πω
t−1,t (x, y). As with marking a Poisson process with independent coin flips, the con-

sequence is that the numbers of particles going from x to y are independent Poisson
variables with means ρ f (Tx,t−1ω)πω

t−1,t (x, y), over all pairs (x, y). Since sums of
independent Poissons are Poisson, the variables (ηt (y))y∈Z are again independent
Poissons and ηt (y) has mean

∑

x

ρ f (Tx,t−1ω)πω
t−1,t (x, y) =

∑

z

ρ f (Tz,−1Ty,tω)π
Ty,tω
−1,0 (z, 0)

= ρ f (Ty,tω).

The last equality is from (3.1).
We have shown that ηt = (ηt (y))y∈Zd has distribution μρ, T0,tω . This measure is a

function of ω̄−∞,t−1, hence independent of ω̄t under P. �

Recall from (1.7) the averaged measure μρ = ∫
μρ,ω

P(dω).

Lemma 3.6 The measure μρ is invariant and ergodic under spatial shifts θx . The
tail σ-field of the state space Z

Z
d

+ is trivial under μρ.

Proof Invariance under θx comes from μρ,ω ◦ θ−1
x = μρ,Tx,0ω and the invariance of

P. Ergodicity will follow from tail triviality.
Let B ⊆ Z

Z
d

+ be a tail event. Then by Kolmogorov’s 0-1 law μρ,ω(B) ∈ {0, 1} for
each ω. We need to show that μρ,ω(B) is P-a.s. constant. For this it suffices to show
that μρ,ω(B) is itself (almost surely) a tail measurable function of ω.

Consider a ball � = {(z, s) : |s| + |z| � M} in the space-time lattice Z
d × Z.

Since the step size of the walks is bounded by R, for each x ∈ Z
d and N � 1

fN (Tx,0ω) =
∑

z∈Zd

πω
−N ,0(z, x)

is a function of the environments {ωz,s : s � −1, |z − x | � R|s|}. Consequently, if
|x | > (R + 1)M , the entire sequence { fN (Tx,0ω)}N∈N is a function of the environ-
ments outside �, and then so is (almost surely) the limit f (Tx,0ω). Since B is tail
measurable, μρ,ω(B) is a function of { f (Tx,0ω) : |x | > (R + 1)M} and thereby a
function of environments outside�. Since�was arbitrary, we conclude thatμρ,ω(B)

is (almost surely) a tail measurable function of ω. �

Proof of the first part of Theorem 1.1 (except for uniqueness) Invariance of μρ for the
process follows by averaging out ω in the result of Lemma 3.5. Spatial invariance,
ergodicity and tail triviality of μρ are in Lemma 3.6. That

∫
η(0) dμρ = ρ follows

from the definition of μρ.
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We prove the ergodicity of the process η• under the time-shift-invariant path
measure Pμρ . We use the notation μρ also for the joint measure μρ(dω, dη) =
P(dω)μρ,ω(dη) and not only for themarginal on η. LetJ be theσ-algebra of invariant
sets on the state space of the particle system:

J = {B ⊆ Z
Z
d

+ : 1B(η) = Pη{η1 ∈ B} for μρ-a.s. η}

By Corollary 5 on p. 97 of [17] it suffices to show that J is trivial. We establish
triviality ofJ by showing that Eμρ [ψ |J ] is almost surely a constant for an arbitrary
bounded cylinder function ψ on Z

Z
d

+ .
Let ηa,b denote the configuration obtained by moving one particle from site a to

site b, if possible: ηa,b = η if η(a) = 0, while if η(a) > 0,

ηa,b(x) =

⎧
⎪⎨

⎪⎩

η(a) − 1 x = a

η(b) + 1 x = b

η(x) x 
= a, b.

Lemma 3.7 There exists a version of Eμρ [ψ |J ] such that for all η ∈ Z
Z
d

+ and
a, b ∈ Z

d , Eμρ [ψ |J ](η) = Eμρ [ψ |J ](ηa,b).

Proof By Corollary 2 on p. 93 of [17], we can define a version ψ̃ of Eμρ [ψ |J ]
pointwise by

ψ̃(η) = lim
n→∞

1

n

n−1∑

t=0

Eη[ψ(ηt )].

We show that ψ̃(η) = ψ̃(ηa,b).
Assume η(a) > 0. Consider the basic coupling Pη,ηa,b of two processes (ηt , ζt )

with initial configurations (η0, ζ0) = (η, ηa,b), as described in Sect. 2. Let

σ = inf{t : ψ(ηs) = ψ(ζs) for all s � t}.

We observe that Pη,ηa,b{σ < ∞} = 1 in all dimensions. In dimensions d ∈ {1, 2}
the irreducible q̄-random walk is recurrent, hence the two discrepancies of opposite
sign that start at a and b annihilate with probability 1. In dimensions d � 3 the
discrepancies are marginally genuinely d-dimensional random walks by assumption
(1.5). Thus they are transient, and so either the discrepancies annihilate or eventually
they never return to the finite set of sites that support ψ.

The conclusion of the lemma follows:

|Eη[ψ(ηt )] − Eηa,b [ψ(ηt)]| � 2‖ψ‖∞Pη,ηa,b{σ > t} −→ 0 as t → ∞. �

Lemma 3.8 Suppose h is a bounded measurable function on Z
Z
d

+ such that for all
a, b ∈ Z

d , h(ηa,b) = h(η) μρ-a.s. Then there exists a tail measurable function h1
such that h = h1 μρ-a.s.
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Proof To showapproximate tailmeasurabilitywe approximate by a cylinder function
and then move particles far enough one by one. (We learned this trick from [21]). Let
ηa denote the configuration obtained by removing one particle from site a if possible:

ηa(x) =
{

(η(a) − 1)+ x = a

η(x) x 
= a.

Let ε > 0. Pick a bounded cylinder function h̃ such that Eμρ |h − h̃|2 < ε2. For
each ω pick b(ω) ∈ Z

d so that f (Tb(ω),0ω) � 1/4 and h̃ does not depend on the
coordinate η(b(ω)). Such b(ω) exists a.s. by the ergodic theorem since E f = 1.
Choose b(ω) so that it is a measurable function. Since h(η) = h(ηa,b(ω)) μρ(dω, dη)-
a.s. and h̃(ηa) = h̃(ηa,b(ω)) by choice of b(ω),

∫
|h(η) − h(ηa)| μρ(dη) �

∫
1{η(a)>0}|h(ηa,b(ω)) − h̃(ηa,b(ω))| μρ(dω, dη)

+
∫

1{η(a)>0}|h̃(ηa) − h(ηa)| μρ(dη).

In the next calculation we bound the first integral after the inequality. Write η =
(η′, η(a), η(b(ω))) tomake the coordinates ata andb(ω) explicit. Change summation
indices and apply Cauchy-Schwarz:

∫
1{η(a)>0}|h(ηa,b(ω)) − h̃(ηa,b(ω))| μρ(dω, dη)

= E

∑

k>0
��0

�ρ f (Ta,0ω)(k)�ρ f (Tb(ω),0ω)(�)

∫
|h(η′, k − 1, � + 1)

− h̃(η′, k − 1, � + 1)|μρ,ω(dη′)

= E

∑

m�0
n>0

f (Ta,0ω)

m + 1
· n

f (Tb(ω),0ω)
· �ρ f (Ta,0ω)(m)�ρ f (Tb(ω),0ω)(n)

×
∫

|h(η′,m, n) − h̃(η′,m, n)| μρ,ω(dη′)

=
∫

1{η(b(ω))>0}
f (Ta,0ω)

η(a) + 1
· η(b(ω))

f (Tb(ω),0ω)
· |h(η) − h̃(η)| μρ(dω, dη)

�
{

E

∑

m�0
n>0

f (Ta,0ω)2

(m + 1)2
· n2

f (Tb(ω),0ω)2
· �ρ f (Ta,0ω)(m)�ρ f (Tb(ω),0ω)(n)

}1/2

× {
Eμρ |h − h̃|2}1/2

�
√
5E[ f 2]ε.
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To obtain the second equality we replace �ρ f (Ta,0ω)(k) by �ρ f (Ta,0ω)(k − 1)· f (Ta,0ω)

k
and similarly for �ρ f (Tb(ω),0ω)(l).

An analogous argument (but easier since we do not need the b(ω)) gives

∫
1{η(a)>0}|h̃(ηa) − h(ηa)| μρ(dη) � Cε.

Since ε > 0 was arbitrary we have h(η) = h(ηa) μρ-a.s.
For given finite � ⊆ Z

d , applying the mapping η �→ ηa repeatedly to remove
all particles from � shows that h equals a.s. a function g� that does not depend
on (η(x) : x ∈ �). As � ↗ Z

d along cubes, the limit h1 = lim g� exists a.s. by
martingale convergence and is tail measurable. �

Wecan now conclude the proof of (temporal) ergodicity of the process η•. Lemmas
3.7 and 3.8 show that Eμρ [ψ |J ] is μρ-a.s. tail measurable, and hence a constant by
Lemma 3.6. �

3.1 Proof of Uniqueness

In this subsection, we complete the proof of part (a) of Theorem 1.1 by showing that
μρ is the unique invariant distribution with the stated properties. We also prove the
second part of Theorem 1.1. The proof of uniqueness uses standard techniques of
interacting particle systems [11]. We will arrive at the proof of uniqueness through
a sequence of lemmas.

For two configurations η, ζ of occupation variables, we say that η � ζ if η(x) �
ζ(x) for all x . For two probability distributions μ, ν on the configuration space, we
say μ � ν if there exists a probability measure μ̃ on pairs (η, ζ) of configurations
of occupation variables such that μ̃(η � ζ) = 1 and the marginals of μ̃ are μ and ν.
For a convex set A, Ae will denote the set of extremal elements.

Recall that S̃, resp. S̃e, denotes the set of spatially invariant resp. ergodic prob-
ability distributions on pairs (η, ζ) of configurations of occupation variables. Let Ĩ
denote the set of probability distributions on pairs of configurations of occupation
variables, that are invariant under the temporal evolution described at the beginning
of Sect. 2.

Lemma 3.9 If ρ1 < ρ2 then μρ1 � μρ2 .

Proof We couple μρ1,ω and μρ2,ω by letting μ̃ω be the distribution of (η, ζ) defined by
letting occupation variables η(x) be independent Poisson with means ρ1 f (Tx,0ω),
γ(x) be independent Poissonwithmeans (ρ2 − ρ1) f (Tx,0ω), and then setting ζ(x) =
η(x) + γ(x). Then define the coupling of μρ1 and μρ2 by μ̃(·) = E[μ̃ω(·)]. �

We state the next two lemmas without proof. The proofs can be found in Lemmas
4.2 - 4.5 of [1].
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Lemma 3.10 We have

(a) If μ1,μ2 ∈ I ∩ S, there is a μ̃ ∈ Ĩ ∩ S̃ with marginals μ1 and μ2.
(b) If μ1,μ2 ∈ (I ∩ S)e, there is a μ̃ ∈ (Ĩ ∩ S̃)e with marginals μ1 and μ2.

Lemma 3.11 If μ̃ ∈ (Ĩ ∩ S̃)e and μ̃{(η, ζ) : η � ζ or ζ � η} = 1 then

μ̃{(η, ζ) : η � ζ} = 1 or μ̃{(η, ζ) : ζ � η} = 1.

A crucial lemma needed in the proof of uniqueness is the following.

Lemma 3.12 Let μ̃ ∈ S̃e such that
∫ [η(0) + ζ(0)]dμ̃ < ∞. Fix x 
= y ∈ Z

d . Then

lim
t→∞ μ̃t

{
(η, ζ) : η(x) > ζ(x) and η(y) < ζ(y)

} = 0

Proof Our proof employs some of the notation developed in Sect. 2. Fix a positive
integerm. Let I = [−m,m]d and let B be the event that I contains both (+) and (−)

particles. The theorem will be proved if we can show that μ̃t (B) → 0 as t → ∞. So
let us assume to the contrary that we can find a sequence tk ↑ ∞ such that

μ̃tk (B) � δ > 0. (3.11)

By our assumptions on the environment, we can find a positive integer T = T (m)

and a positive real number ρ = ρ(m) > 0 such that

min
x, y ∈ I

P
{
Xx

• and X̃ y
• meet by time T

}
� ρ.

Let A(t, y) denote the event that a (+) or a (−) particle present in the cube y + I at
time t has been annihilated by time t + T . It is clear that

P
[
A(t, y)

∣∣ηt , ζt
]

� ρ · 1B
{
θy(ηt , ζt )

}
a.s. (3.12)

For what follows, assume that all tk+1 − tk � T . Let φt (x) = β+
t (x) + β−

t (x) be the
number of discrepancy particles at x at time t . Let n = l(2m + 1) + m for a positive
integer l and divide the cube [−n, n]d into (2l + 1)d cubes of side length 2m + 1.
We have

1

(2n + 1)d
∑

y∈[−n,n]d
φtk+T (y) � 1

(2n + 1)d
∑

y∈[−n−RT,n+RT ]d
φtk (y)

− 1

(2n + 1)d

(2l+1)d∑

j=1

1B{θu( j)(ηtk , ζtk )} · 1A(tk ,u( j))
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where u( j) is the center of cube j . Taking expectations and letting n → ∞, we get

Eμ̃[φtk+T (0)] � Eμ̃[φtk (0)] − lim inf
n→∞

−1

(2n + 1)d

(2l+1)d∑

j=1

Eμ̃

[
1B{θu( j)(ηtk , ζtk )} · 1A(tk ,u( j))

]

It follows from (3.12) and (3.11) that

Eμ̃

[
1B{θu( j)(ηtk , ζtk )} · 1A(tk ,u( j))

]
� ρμ̃tk (B) � ρδ.

We thus have

Eμ̃[φtk+1(0)] � Eμ̃[φtk+T (0)] � Eμ̃[φtk (0)] − ρδ

(2m + 1)d
.

Wecan conclude fromLemma 2.1 that Eμ̃[φtk (0)] → −∞. But this is a contradiction
since Eμ̃[φt(0)] � 0. The proof of the lemma is complete. �
Lemma 3.13 If μ1,μ2 ∈ (I ∩ S)e and Eμi η(0) < ∞ for i = 1, 2, then μ1 � μ2 or
μ2 � μ1.

Proof FromLemma 3.10, we can find μ̃ ∈ (Ĩ ∩ S̃)e withmarginalsμ1 andμ2. Using
the ergodic decomposition of stationary measures [24, Theorem 6.6],

μ̃
{
(η, ζ) : η(x) > ζ(x) and η(y) < ζ(y)

}

=
∫

S̃e

ν̃
{
(η, ζ) : η(x) > ζ(x) and η(y) < ζ(y)

}
�(d ν̃),

for a probability measure � on S̃e. On applying the operator S(t) to both sides of

μ̃

˜ ˜ � 1

the above equation, we observe that the right hand side goes to 0. We thus get

{(η, ζ) : η � ζ or ζ � η} =  1

An application of Lemma 3.11 completes the proof. �
Proposition 3.14 If μ ∈ (I ∩ S)e and ρ0 = Eμη(0) <  ∞ then μ = μρ0 .

Proof Since μρ ∈ Se ∩ I, it follows that μρ ∈ (I ∩ S)e. We can then conclude from 
Lemmas 3.9 and 3.13 that there exists a ρ′

0 ∈ [0, ∞] such that μ � μρ for ρ > ρ′
0 and 

μ � μρ for ρ < ρ′
0. In particular, we have ρ0 = Eμη(0) � ρ for ρ > ρ′

0 and similarly 
ρ0 � ρ for ρ < ρ′

0. This says that ρ′
0 = ρ0.

Now fix ρ1 < ρ0 < ρ2. For all (x1, x2, · · ·  , xn ) ∈ (Zd )n and all (k1, k2, · · ·  , kn ) ∈ 
(Z+)n , we have

μρ1 (η(xi ) � ki , 1 � i � n) � μ(η(xi ) � ki , 1 � i � n) � μρ2 (η(xi ) � ki , 1 � i � n)

The first inequality (resp. the second inequality) above can be seen by looking at 
the coupled measure μ corresponding to μρ1 (resp. μρ2 ) and μ so that μ(η ζ) =
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(resp. μ̃(η � ζ) = 1). Now let ρ1 ↑ ρ0 and ρ2 ↓ ρ0 to see that μ has the same finite
dimensional distributions as μρ0 . �

Proof of the remaining parts of Theorem1.1 We first prove that μρ is the unique
measure with the stated properties in part (a) of Theorem 1.1. Indeed, letμ be another
measurewith those properties. Sinceμ ∈ Se ∩ I, we can conclude thatμ ∈ (I ∩ S)e.
From Proposition 3.14, we must have that μ = μρ.

We now turn to part (b) of the theorem. Let ν be a probability measure on Z
Z
d

+
that is stationary and ergodic under spatial translations and has mean occupation∫

ζ(0) dν = ρ. Denote the occupation process with initial distribution ν by ζt . Utiliz-
ing the ergodic decomposition theorem [24,Theorem6.6], find μ̃ ∈ S̃ewithmarginals
μρ and ν. Let μ̃t be the time t distribution of the joint process (ηt , ζt ) coupled as
described in Sect. 2.

Initial shift invariance implies that mean occupations are constant ρ throughout
time and space:

Eμ̃t [ζ(x)] = Eν [ζt (x)] =
∫

E

{∑

y

ζ(y)πω
0,t (y, x)

}
ν(dζ) =

∑

y

E
(
πω
0,t (y, x)

) ∫
ζ(y)dν = ρ.

Chebyshev’s inequality and Tychonov’s theorem (Theorem 37.3 in [12]) can be used
to show that the sequence {μ̃t }t∈Z+ is tight.

Let ν̃ be any limit point as t → ∞. Then by Proposition 2.2 ν̃{(η, ζ) : η = ζ} = 1.
This proves that Pν{ζt ∈ ·} ⇒ μρ. This completes the proof of Theorem 1.1. �

4 Covariances of the Invariant Measures

Define the Green’s functions for both q and q̄ walks by

GN (x, y) =
N∑

k=0

qk(x, y) and ḠN (x, y) =
N∑

k=0

q̄k(x, y).

Recall the potential kernel for the q̄ walk

ā(x) = lim
N→∞

(
ḠN (0, 0) − ḠN (x, 0)

)
. (4.1)

In the transient case d � 3 the limit above exists trivially, since

G(x, y) =
∞∑

k=0

qk(x, y) < ∞ and Ḡ(x, y) =
∞∑

k=0

q̄k(x, y) < ∞.

So for d � 3
ā(x) = Ḡ(0, 0) − Ḡ(x, 0). (4.2)
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For the existence of the limit (4.1) in the recurrent case d ∈ {1, 2} see T1 on p. 352
of [22]. In all cases the kernel ā(x) satisfies these equations:

∑

z

q̄(0, z)ā(z) = 1 and
∑

z

q̄(x, z)ā(z) = ā(x) for x 
= 0. (4.3)

The constant β defined by (1.13) has the alternate representation

β =
∑

z

q(0, z)ā(z). (4.4)

We omit the argument for the equality of the two representations of β. It is a simple
version of the one given at the end of this section for (1.15).

To prove Theorem 1.2 we first verify this proposition and then derive the Fourier
representation (1.15).

Proposition 4.1 Let d � 1. For m ∈ Z
d \ {0}

Cov[ f (ω), f (Tm,0ω)] = β−1
∑

z

q(0, z)[ā(−m) − ā(z − m)] (4.5)

and
Var[ f (ω)] = β−1 − 1. (4.6)

A few more notations. Recall that Yn denotes the Markov chain with transition q
and Ȳn the q̄ random walk. Successive returns to the origin are marked as follows:

τ0 = 0 and for j > 0, τ j = inf{n > τ j−1 : Yn = 0}. (4.7)

Abbreviate τ = τ1. The corresponding stopping time for Ȳn is τ̄ . For m ∈ Z
d and

N � 1 abbreviate

CN (m) = Cov[ fN (ω), fN (Tm,0ω)] =
∑

z,w∈Zd

Cov
[
π−N ,0(z, 0), π−N ,0(w,m)

]
.

Define also the function

h(y) =
∑

z∈Zd

Cov[π0,1(0, y + z), π0,1(0, z)] = q(0, y) − q̄(0, y), y ∈ Z
d .

Symmetry h(−y) = h(y) holds.
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Lemma 4.2 In all dimensions d � 1,

CN (m) =
∑

y∈Zd

h(y)GN−1(y,m). (4.8)

Proof The case N = 1 follows from a shift of space and time. To do induction on
N use the Markov property and the additivity of covariance. Abbreviate temporarily
κx,y = π−N ,−N+1(x, y) and recall that the mean kernel is py−x = Eκx,y .

CN (m) =
∑

z,z1,w,w1

Cov
[
κz,z1π−N+1,0(z1, 0) , κw,w1π−N+1,0(w1,m)

]

=
∑

z,z1,w,w1

{
Cov

[
(κz,z1 − pz1−z)π−N+1,0(z1, 0) , (κw,w1 − pw1−w)π−N+1,0(w1,m)

]

(4.9)

+ Cov
[
pz1−zπ−N+1,0(z1, 0) , (κw,w1 − pw1−w)π−N+1,0(w1,m)

]
(4.10)

+ Cov
[
pz1−zπ−N+1,0(z1, 0) , pw1−wπ−N+1,0(w1,m)

] }
. (4.11)

Working from the bottom up, the terms on line (4.11) add up to CN−1(m). The terms
on line (4.10) vanish because κw,w1 − pw1−w is mean zero and independent of the
other random variables inside the covariance. On line (4.9) the covariance vanishes
unless z = w. Thus by rearranging line (4.9) we get

CN (m) − CN−1(m) = line (4.9)

=
∑

z,z1,w1

Cov(κz,z1 ,κz,w1)E
[
π−N+1,0(z1, 0)π−N+1,0(w1,m)

]

=
∑

y,x

Cov(κ0,x ,κ0,x+y)
∑

�

E
[
π−N+1,0(y,m + �)π−N+1,0(0, �)

]

=
∑

y

h(y)qN−1(y,m).

�

In the recurrent case we will use Abel summation, hence the next lemma.

Lemma 4.3 Let d ∈ {1, 2}. For x,m ∈ Z
d , the limit

a(x,m) = lim
s↗1

∞∑

k=0

sk
(
qk(0,m) − qk(x,m)

)
(4.12)

exists. For m = 0 the limit is

a(x, 0) = ā(x)

β
(4.13)
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and for m 
= 0

a(x,m) = ā(x)

β

∑

z

q(0, z)
[
ā(−m) − ā(z − m)

] − ā(−m) + ā(x − m). (4.14)

Proof Let s vary in (0, 1) and let

U (x,m, s) = Ex

[ τ−1∑

k=0

sk1{Yk = m}
]

−→
s↗1

Ex

[ τ−1∑

k=0

1{Yk = m}
]

= U (x,m).

Decompose the summation across intervals [τ j , τ j+1) and use the Markov property:

∞∑

k=0

skqk(x,m) = Ex

[ τ1−1∑

k=0

sk1{Yk = m}
]

+
∞∑

j=1

Ex

[
sτ j

τ j+1−1∑

k=τ j

sk−τ j 1{Yk = m}
]

= U (x,m, s) +
∞∑

j=1

Ex (s
τ )E0(s

τ ) j−1U (0,m, s)

= U (x,m, s) + Ex (sτ )

1 − E0(sτ )
U (0,m, s).

From this,

∞∑

k=0

sk
(
qk(0,m) − qk(x,m)

) = 1 − Ex (sτ )

1 − E0(sτ )
U (0,m, s) −U (x,m, s). (4.15)

We analyze the quantities on the right in (4.15).
Suppose first x 
= 0. ThenU (x,m) is the same for the Markov chain Yk as for the

randomwalk Ȳk because these processes agree until the first visit to 0. In the notation
of Spitzer [22], with a check added to refer to the random walk Ȳk , ḡ{0}(x,m) =
U (x,m). By P29.4 on p. 355 of [22] and D11.1 on p. 115, for recurrent randomwalk

U (x,m) = ḡ{0}(x,m) = ā(x) + ā(−m) − ā(x − m).

For x = 0 we have U (0, 0) = 1, and for m 
= 0,

U (0,m) =
∑

y 
=0

q(0, y)U (y,m) =
∑

y 
=0

q(0, y)
[
ā(y) + ā(−m) − ā(y − m)

]

= β +
∑

y

q(0, y)
[
ā(−m) − ā(y − m)

]
.
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For the asymptotics of the fraction on the right in (4.15) we can assume again
x 
= 0 for otherwise the value is 1. It will be convenient to look at the reciprocal. A
computation gives

1 − E0(sτ )

1 − Ex (sτ )
=

∑∞
k=0 s

k P0(τ > k)∑∞
k=0 s

k Px (τ > k)

= 1∑∞
k=0 s

k Px (τ > k)
+ s

∑

z 
=0

q(0, z)

∑∞
k=0 s

k Pz(τ > k)∑∞
k=0 s

k Px (τ > k)
.

Again we can take advantage of known randomwalk limits because both x, z 
= 0 so
the probabilities are the same as those for Ȳk . By P32.2 on p. 379 of [22], as s ↗ 1,
for recurrent random walk the above converges to (note that Ex (τ ) = ∞)

∑

z 
=0

q(0, z)
ā(z)

ā(x)
= β

ā(x)
.

Letting s ↗ 1 in (4.15) gives (4.13) and (4.14). �

Form = 0 we can obtain the convergence as in (4.1) without the Abel summation.
But we do not need this for further development.
Proof of Proposition 4.1. Since fN → f in L2(P), the covariance in (4.5) is given
by the limit of CN (m), so by (4.8)

Cov[ f (ω), f (Tm,0ω)] = lim
N→∞

{∑

y

q(0, y)GN−1(y,m) −
∑

y

q̄(0, y)GN−1(y,m)
}
.

Next,

∑

y

q(0, y)GN−1(y,m) = GN (0,m) − δ0,m = qN (0,m) − δ0,m + GN−1(0,m).

Since the Markov chain q follows the random walk q̄ away from 0 it is null recurrent
for d = 1, 2 and transient for d � 3. So qN (0,m) → 0 [13, Theorem 1.8.5]. Thus
the limiting covariance now has the form

− δ0,m + lim
N→∞

∑

y

q̄(0, y)[GN−1(0,m) − GN−1(y,m)]. (4.16)

At this point the treatment separates into recurrent and transient cases. This is because
the Green’s function is uniformly bounded only in the transient case.
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Case 1. d ∈ {1, 2}
Convergence in (4.16) implies Abel convergence (Theorem 12.41 in [26] or Theorem
1.33 in Chap. 3 of [27]), so the limiting covariance equals

−δ0,m + lim
s↗1

∑

y

q̄(0, y)
∞∑

k=0

sk
(
qk(0,m) − qk(y,m)

)
.

By substituting in (4.13) and (4.14) we obtain (4.6) and (4.5).

Case 2. d � 3
In the transient case we can pass directly to the limit in (4.16) and obtain

Cov[ f (ω), f (Tm,0ω)] = −δ0,m +
∑

y

q̄(0, y)[G(0,m) − G(y,m)]. (4.17)

The sum above can be restricted to y 
= 0. By restarting after the first return to 0,

G(y,m) = Ey

[ τ−1∑

k=0

1{Yk = m}
]

+ Py(τ < ∞)G(0,m). (4.18)

Next,

G(0,m) =
∞∑

j=0

E0

[
1{τ j < ∞}

τ j+1−1∑

k=τ j

1{Yk = m}
]

=
∞∑

j=0

P0(τ < ∞) j E0

[ τ−1∑

k=0

1{Yk = m}
]

= 1

P0(τ = ∞)

(
δ0,m + (1 − δ0,m)

∑

z 
=0

q(0, z)Ez

[ τ−1∑

k=0

1{Yk = m}
] )

.

(4.19)
Now consider first m 
= 0. Combining the above,

Cov[ f (ω), f (Tm,0ω)] =
∑

y 
=0

q̄(0, y)
{
G(0,m) − G(y,m)

}

=
∑

y 
=0

q̄(0, y)
{ Py(τ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)Ez

[ τ−1∑

k=0

1{Yk = m}
]

− Ey

[ τ−1∑

k=0

1{Yk = m}
] }

using equality of q and q̄ away from 0
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=
∑

y 
=0

q̄(0, y)
{ Py(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)Ez

[ τ̄−1∑

k=0

1{Ȳk = m}
]

− Ey

[ τ̄−1∑

k=0

1{Ȳk = m}
] }

= P0(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)Ez

[ τ̄−1∑

k=0

1{Ȳk = m}
]

−
∑

y 
=0

q̄(0, y)Ey

[ τ̄−1∑

k=0

1{Ȳk = m}
]

applying (4.18) and (4.19) to the q̄ walk

= P0(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)
{
Ḡ(z,m) − Pz(τ̄ < ∞)Ḡ(0,m)

}
− P0(τ̄ = ∞)Ḡ(0,m)

= P0(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)
{
Ḡ(z,m) − Pz(τ̄ < ∞)Ḡ(0,m)

}

− P0(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)Pz(τ = ∞)Ḡ(0,m)

= P0(τ̄ = ∞)

P0(τ = ∞)

∑

z 
=0

q(0, z)
[
Ḡ(z,m) − Ḡ(0,m)

]
.

To finish this case, note that

β =
∑

z

q(0, z)ā(z) =
∑

z 
=0

q(0, z)(Ḡ(0, 0) − Ḡ(z, 0)) =
∑

z 
=0

q(0, z)
Pz(τ̄ = ∞)

P0(τ̄ = ∞)

= P0(τ = ∞)

P0(τ̄ = ∞)
.

We have arrived at

Cov[ f (ω), f (Tm,0ω)] = β−1
∑

z 
=0

q(0, z)
[
ā(−m) − ā(z − m)

]
.

Return to (4.17)–(4.19) to cover the case m = 0:

Cov[ f (ω), f (ω)] =
∑

y
q̄(0, y)[G(0, 0) − G(y, 0)] − 1 =

∑

y 
=0

q̄(0, y)
Py(τ = ∞)

P0(τ = ∞)
− 1

= P0(τ̄ = ∞)

P0(τ = ∞)
− 1 = β−1 − 1.

This completes the proof of Proposition 4.1. �
Completion of the proof of Theorem1.2 It remains to prove the Fourier representation
(1.15) from (4.5). In several stages symmetry of ā and the transitions is used.
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Cov[ f (ω), f (Tm,0ω)] = β−1
∑

z

q(0, z)[ā(m) − ā(m − z)]

= lim
N→∞ β−1

N∑

k=0

∑

z

q(0, z)[q̄k(m − z, 0) − q̄k(m, 0)]

= lim
N→∞

β−1

(2π)d

N∑

k=0

∑

z

q(0, z)
∫

Td

[e−iθ·(m−z) − e−iθ·m]λ̄k(θ) dθ

= lim
N→∞

−β−1

(2π)d

∫

Td

cos(θ · m)
1 − λ(θ)

1 − λ̄(θ)
(1 − λ̄N+1(θ)) dθ

= −β−1

(2π)d

∫

Td

cos(θ · m)
1 − λ(θ)

1 − λ̄(θ)
dθ.

The last equality comes from 0 � λ̄(θ) < 1 for θ ∈ T
d \ {0} and dominated con-

vergence. The ratio (1 − λ(θ))/(1 − λ̄(θ)) stays bounded as θ → 0 because both
transitions q and q̄ have zero mean and q̄ has a nonsingular covariance matrix [22,
P7 p. 74]. �

5 Convergence of Centered Current Fluctuations

We prove Theorem 1.4 by proving the following proposition. Recall the definition of
the current Yn(t, r) from (1.18), and let {Z(t, r) : (t, r) ∈ R+ × R} be the mean zero
Gaussian process defined by (1.22) or equivalently through the covariance (1.26).
Recall also the definitions

Y n(t, r) = n−1/4
{
Yn(t, r) − Eω[Yn(t, r)]

}
,

Y n(θ) =
N∑

i=1

θi Y n(ti , ri ) and Z(θ) =
N∑

i=1

θi Z(ti , ri ).

Proposition 5.1

Eω
[
exp

{
iY n(θ)

}] → E
[
exp

{
i Z(θ)

}]
in P-probability. (5.1)

The remainder of the section proves this proposition and thereby Theorem 1.4.
We write Y n(θ) as a sum of independent mean zero random variables (under Pω) so
that we can apply Lindeberg-Feller [6]:

Y n(θ) = n−1/4
N∑

i=1

θi
{
Yn(ti , ri ) − EωYn(ti , ri )

} = Wn =
∞∑

m=−∞
Ūm (5.2)
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with

Ūm =
N∑

i=1

θi

(
Um(ti , ri ) 1{m > 0} − Vm(ti , ri ) 1{m � 0}

)
, (5.3)

and

Um(t, r) = n−1/4
η0(m)∑

j=1

1{Xm, j
�nt� � �nvt� + �r√n�}

− n−1/4Eω(η0(m))Pω(Xm
�nt� � �nvt� + �r√n� ),

(5.4)

Vm(t, r) = n−1/4
η0(m)∑

j=1

1{Xm, j
�nt� > �nvt� + �r√n�}

− n−1/4Eω(η0(m))Pω(Xm
�nt� > �nvt� + �r√n� ).

The n-dependence is suppressed from the notations Ūm , Um(t, r) and Vm(t, r). The
variables {Ūm}m∈Z are independent under Pω because initial occupation variables
and walks are independent. We will also use repeatedly this formula, a consequence
of the independence of η0 and the walks under Pω:

Eω[Um(t, r)2] = n−1/2 Varω
( η0(m)∑

j=1

1{Xm, j
�nt� � �nvt� + �r√n� }

)

= n−1/2Eω(η0(m))Pω(Xm�nt� � �nvt� + �r√n� )Pω(Xm�nt� > �nvt� + �r√n� )

+ n−1/2 Varω(η0(m))Pω(Xm�nt� � �nvt� + �r√n� )2

(5.5)
and the corresponding formula for Vm(t, r).
Let a(n) ↗ ∞ be a sequence that will be determined precisely in the proof. Define

the finite sum
W ∗

n =
∑

|m|�a(n)
√
n

Ūm . (5.6)

We observe that the terms |m| > a(n)
√
n can be discarded from (5.2).

Lemma 5.2 E |Wn − W ∗
n |2 → 0 as n → ∞.

Proof By the mutual independence of occupation variables and walks under Pω ,
and as eventually a(n) > |ri |, the task boils down to showing that sums of this type
vanish:
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E

[( ∑

m>a(n)
√
n

Um(t, r)

)2 ]
= E

∑

m>a(n)
√
n

Eω[Um(t, r)2]

� n−1/2
E

∑

m>a(n)
√
n

[
Eω(η0(m)) + Varω(η0(m))

]
Pω{Xm, j

�nt� � �nvt� + �r√n� }

� Cn−1/2
∑

m>a(n)
√
n

P{X�nt� � �nvt� + �r√n� − m }

= CE

[(
X�nt� − �nvt�√

n
− r + a(n)

)− ]
.

Under the averaged measure P the walk Xs is a sum of bounded i.i.d. random
variables, hence by uniform integrability the last line vanishes as a(n) ↗ ∞. There
is also a term for m < a(n)

√
n involving Vm(t, r) that is handled in the same way.

�
The limit θ · Z in our goal (5.1) has variance

σ2
θ =

∑

1�i, j�N

θiθ j

[
ρ0�1

(
(ti , ri ), (t j , r j )

) + σ2
0�2

(
(ti , ri ), (t j , r j )

)]
(5.7)

and the two �-terms, defined earlier in (1.24) and (1.25), have the following expres-
sions in terms of a standard 1-dimensional Brownian motion Bt :

�1
(
(s, q), (t, r)

) =
∫ ∞

−∞

(
P[Bσ2s � q − x]P[Bσ2t > r − x]

− P[Bσ2s � q − x, Bσ2t > r − x]
)
dx

(5.8)

and

�2
(
(s, q), (t, r)

) =
∫ ∞

0
P[Bσ2s � q − x]P[Bσ2t � r − x] dx

+
∫ 0

−∞
P[Bσ2s > q − x]P[Bσ2t > r − x] dx .

(5.9)

By Lemma 5.2, the desired limit (5.1) follows from showing

Eω(eiW
∗
n ) → e−σ2

θ/2 in P-probability as n → ∞. (5.10)

This limit will be achieved by showing that the usual conditions of the Lindeberg-
Feller theorem hold in P-probability:

∑

|m|�a(n)
√
n

Eω(Ū 2
m) → σ2

θ (5.11)
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and ∑

|m|�a(n)
√
n

Eω
( |Ūm |21{|Ūm | � ε}) → 0. (5.12)

The standard Lindeberg-Feller theorem can then be applied to subsequences. The
limits (5.11)–(5.12) in P-probability imply that every subsequence has a further
subsequence along which these limits hold for P-almost every ω. Thus along this
further subsequenceW ∗

n converges weakly toN (0,σ2
θ ) under P

ω for P-almost every
ω. So, every subsequence has a further subsequence along which the limit (5.10)
holds for P-almost every ω. This implies the limit (5.10) in P-probability.

We check the negligibility condition (5.12) in the L1 sense.

Lemma 5.3 Under assumption (1.20),

lim
n→∞

∑

|m|�a(n)
√
n

E
[
|Ūm |21{|Ūm | � ε}

]
= 0. (5.13)

Proof First

Ū 2
m =

( N∑

i=1

θi

[
Um(ti , ri )1{m � 0} − Vm(ti , ri )1{m < 0}

])2

� C
N∑

i=1

Um(ti , ri )
21{m � 0} + C

N∑

i=1

Vm(ti , ri )
21{m < 0}.

The arguments for the terms above are the same. So take a term from the first sum,
let (t, r) = (ti , ri ), and the task is now

lim
n→∞

a(n)
√
n∑

m=0

E
[
Um(t, r)21{|Ūm | � ε}] = 0. (5.14)

Since
|Ūm | � Cn−1/4

[
η0(m) + Eω(η(m))

]

and by adjusting ε, limit (5.14) follows if we can show the limit for these sums:

a(n)
√
n∑

m=0

E
[
Um(t, r)21{η0(m) > n1/4ε}]

+
a(n)

√
n∑

m=0

E
[
Um(t, r)21{Eω(η0(m)) > n1/4ε}].

(5.15)
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Abbreviate
Am = {Xm

nt � �nvt� + �r√n� }.

The terms of the second sum in (5.15) develop as follows, using (5.5), the indepen-
dence of ω̄−∞,−1 and ω̄0,∞, and the shift invariance:

E
[
Eω(Um(t, r)2)1{Eω(η0(m)) > n1/4ε}]

� n−1/2
E
[(
Eω(η0(m)) + Varω(η0(m))

)
1{Eω(η0(m)) > n1/4ε}]P(Am)

= n−1/2
E
[(
Eω(η0(0)) + Varω(η0(0))

)
1{Eω(η0(0)) > n1/4ε}]P(Am).

Since the averaged walk is a walk with bounded i.i.d. steps,

a(n)
√
n∑

m=0

P(Am) � E
[
(X�nt� − �nvt� − �r√n� )−

]
� C(n1/2 + 1). (5.16)

Thus

a(n)
√
n∑

m=0

E
[
Um(t, r)21{Eω(η0(m)) > n1/4ε}]

� CE
[(
Eω(η0(0)) + Varω(η0(0))

)
1{Eω(η0(0)) > n1/4ε}].

The last line vanishes as n → ∞ by dominated convergence, by assumption (1.20).
For the first sum in (5.15) first take quenched expectation of the walks while

conditioning on η0, to get the bound

Eω
η0

[Um(t, r)2] � 2n−1/2Pω(Am)
[
η0(m)2 + Eω(η0(m))2

]
.

Using again the independence of ω̄−∞,−1 and ω̄0,∞, shift-invariance, and (5.16),

a(n)
√
n∑

m=0

E
[
Um(t, r)21{η0(m) > n1/4ε}]

� Cn−1/2
a(n)

√
n∑

m=0

P(Am) · E[(η0(0)2 + Eω(η0(0))
2
)
1{η0(0) > n1/4ε}]

� CE
[(

η0(0)
2 + Eω(η0(0))

2
)
1{η0(0) > n1/4ε}]

The last line vanishes as n → ∞ by dominated convergence, by assumption (1.20).

�
We turn to checking (5.11).
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∑

|m|�a(n)
√
n

Eω
[
Ū 2

m

] =
∑

1�i, j�N

θiθ j

∑

|m|�a(n)
√
n

[
1{m>0}Eω

(
Um(ti , ri )Um(t j , r j )

)

+ 1{m�0}Eω
(
Vm(ti , ri )Vm(t j , r j )

)]
.

Eachquenched expectationof a product of twomean zero randomvariables is handled
in the manner of (5.5) that we demonstrate with the second expectation:

Eω
(
Vm(ti , ri )Vm(t j , r j )

)

= n−1/2 Covω

( η0(m)∑

k=1

1{Xm,k
�nti � > �nvti� + ri

√
n },

η0(m)∑

�=1

1{Xm,�
�nt j � > �nvt j� + r j

√
n }
)

= n−1/2Eω(η0(m))
[
Pω(Xm�nti � > �nvti� + ri

√
n, Xm�nt j � > �nvt j� + r j

√
n )

− Pω(Xm�nti � > �nvti� + ri
√
n )Pω(Xm�nt j � > �nvt j� + r j

√
n )
]

+ n−1/2 Varω(η0(m))Pω(Xm�nti � > �nvti� + ri
√
n )Pω(Xm�nt j � > �nvt j� + r j

√
n ).

After some rearranging of the resulting probabilities, we arrive at

∑

|m|�a(n)
√
n

Eω
[
Ū 2
m

]

= n−1/2
∑

1�i, j�N

θiθ j

[ ∑

|m|�a(n)
√
n

Eω(η0(m))

×
{
Pω(Xm�nti � � �nvti� + �ri

√
n� )Pω(Xm�nt j � > �nvt j� + �r j

√
n� )

− Pω(Xm�nti � � �nvti� + �ri
√
n�, Xm�nt j � > �nvt j� + �r j

√
n� )

}

+
∑

|m|�a(n)
√
n

Varω(η0(m))

×
{

1{m>0}Pω(Xm�nti � � �nvti� + �ri
√
n� )Pω(Xm�nt j � � �nvt j� + �r j

√
n� )

+ 1{m�0}Pω(Xm�nti � > �nvti� + �ri
√
n� )Pω(Xm�nt j � > �nvt j� + �r j

√
n� )

} ]
.

(5.17)
The terms above have been arranged so that the sums match up with the integrals in
(5.7)–(5.9). Limit (5.11) is nowproved by showing that, term by term, the sums above
converge to the integrals. In each case the argument is the same.We illustrate the case
of the sum of the first term with the factor Varω(η0(m)) in front. To simplify notation
we let ((s, q), (t, r)) = ((ti , ri ), (t j , r j )). In other words, we show this convergence
in P-probability:
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S0(n) ≡ n−1/2
∑

0<m�a(n)
√
n

Varω(η0(m))Pω(Xm
�ns� � �nvs� + �q√

n� )

× Pω(Xm
�nt� � �nvt� + �r√n� )

−→
n→∞ σ2

0

∫ ∞

0
P[Bσ2s � q − x]P[Bσ2t � r − x] dx ≡ I.

(5.18)

The proof of S0(n)
P→ I is divided into two lemmas. Let

S1(n) = n−1/2
∑

0<m�a(n)
√
n

Varω(η0(m))

× P
(
Bσ2s � q − m√

n

)
P
(
Bσ2t � r − m√

n

)
.

(5.19)

Lemma 5.4 lim
n→∞ E|S0(n) − S1(n)| = 0.

Proof By the quenched central limit theorem for space-time RWRE [16], for each
x ∈ R the limit

Pω(X�ns� � �nvs� + �x√n� ) → P(Bσ2s � x)

holds for P-a.e. ω. Since these are distribution functions (monotone and between 0
and 1) with a continuous limit the convergence is uniform in x . Set

Dn(ω) = sup
x,y∈R

∣∣Pω(X�ns� � �nvs� + �x√n� )Pω(X�nt� � �nvt� + �y√n� )

− P(Bσ2s � x)P(Bσ2t � y)
∣∣

and then Dn(ω) → 0 P-a.s. By shift-invariance

E|S0(n) − S1(n)| � n−1/2
∑

0<m�a(n)
√
n

EVarTm,0ω(η0(0))

×
∣∣∣PTm,0ω(X�ns� � �nvs� + �q√

n� − m)PTm,0ω(X�nt� � �nvt� + �r√n� − m)

− P
(
Bσ2s � q − m√

n

)
P
(
Bσ2t � r − m√

n

) ∣∣∣

� n−1/2
∑

0<m�a(n)
√
n

E
[
VarTm,0ω(η0(0))Dn(Tm,0ω)

]

� 2a(n)E
[
Varω(η0(0))Dn(ω)

]
. (5.20)

Moment assumption (1.20) and dominated convergence guarantee that

E
[
Varω(η0(0))Dn(ω)

] −→ 0.
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Thus we can take

a(n) =
(
sup
k:k�n

E
[
Varω(η0(0))Dk(ω)

] )−1/2
(5.21)

to have a(n) ↗ ∞ while still line (5.20) vanishes as n → ∞. �

The choice of a(n) made above depends on s, t but that is not problematic since
we have only finitely many time points ti to handle.

Lemma 5.5 lim
n→∞ E|S1(n) − I | = 0.

Proof First we discard tails of the sum and integral. Given ε > 0, we can choose a
large enough c < ∞ such that

S∗
1 (n) = n−1/2

∑

0<m�c
√
n

Varω(η0(m))

× P
(
Bσ2s � q − m√

n

)
P
(
Bσ2t � r − m√

n

)

satisfies E|S1(n) − S∗
1 (n)| � ε, and so that

I ∗ = σ2
0

∫ c

0
P[Bσ2s � q − x]P[Bσ2t � r − x] dx

satisfies I − I ∗ � ε. Thus it suffices to prove S∗
1 (n) → I ∗.

Next, since the Gaussian distribution functions are Lipschitz continuous,

S∗
1 (n) − I ∗ = n−1/2

∑

0<m�c
√
n

[
Varω(η0(m)) − σ2

0

]

× P
(
Bσ2s � q − m√

n

)
P
(
Bσ2t � r − m√

n

)
+ O(n−1/2).

Introduce an intermediate scale 1 << L <<
√
n and use again Lipschitz continuity

of the probabilities:

S∗
1 (n) − I ∗ = L

n1/2
∑

0� j� c
√
n

L −1

(
1

L

( j+1)L∑

m= j L+1

Varω(η0(m)) − σ2
0

)

×
{

P
(
Bσ2s � q − j L√

n

)
P
(
Bσ2t � r − j L√

n

)
+ O

( L√
n

)}
+ Rn√

n
+ O(n−1/2).

The error term Rn consists of order L terms bounded by |Varω(η0(m)) − σ2
0 | that

appear because the collection of summation intervals ( j L , ( j + 1)L]maynot exactly
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cover the original summation interval 0 < m � c
√
n. It satisfiesERn � CL . Finally,

bounding the probabilities crudely by 1 and by shift-invariance,

E|S∗
1 (n) − I ∗| � CE

∣∣∣∣
1

L

L∑

m=1

Varω(η0(m)) − σ2
0

∣∣∣∣ + O(Ln−1/2).

This vanishes as we let first n → ∞ and then L → ∞ and apply the L1 ergodic
theorem. �

Limit (5.18) has now been verified. All terms in (5.17) are treated the same way to
show that they converge, in L1(P) and therefore inP-probability, to the corresponding
integrals in (5.7)–(5.9). This verifies limit (5.11). Since both (5.11) and (5.12) have
been checked, the Gaussian limit in (5.10) has been proved, as explained in the
paragraph following (5.12). The proof of Proposition 5.1 and thereby also the proof
of Theorem 1.4 are complete. �

6 The Quenched Mean Process

We now prove Theorems 1.6 and 1.7. We will use a simplified notation for the
quenched jump probabilities: ωx,n = ωx,n(1) and ω′

x,n = ωx,n(0) = 1 − ωx,n(1).
Note that when the steps are 0 and 1 we have v = p(1) = Eω0,0. Potential ker-
nel ā can be easily computed from Eq. (4.3) and seen to equal ā(x) = |x |

2v(1−v)
. Recall

that α = Eω0,0ω
′
0,0. Then formula (4.4) gives

β = α

v(1 − v)
.

Proof of Theorem1.6 Define

Hn(x) = Eω
[∑

y>0

η0(y)∑

j=1

1{X y, j
n � x} −

∑

y�0

η0(y)∑

j=1

1{X y, j
n > x}

]
.

Then Yn(t, r) = H�nt�(�nvt� + �r√n�). Compute

Hn+1(x) = Eω
[∑

y>0

η0(y)∑

j=1

1{X y, j
n � x − 1}

]
+Eω

[∑

y>0

η0(y)∑

j=1

1{X y, j
n = x}

]
ω′
x,n

−
∑

y�0

η0(y)∑

j=1

1{X y, j
n > x}

]
−
∑

y�0

η0(y)∑

j=1

1{X y, j
n = x}

]
ωx,n .
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Also,

ωx,nHn(x − 1) + ω′
x,nHn(x)

= Eω
[∑

y>0

η0(y)∑

j=1

1{X y, j
n � x − 1}

]
ωx,n −

∑

y�0

η0(y)∑

j=1

1{X y, j
n > x − 1}

]
ωx,n

+ Eω
[∑

y>0

η0(y)∑

j=1

1{X y, j
n � x}

]
ω′
x,n −

∑

y�0

η0(y)∑

j=1

1{X y, j
n > x}

]
ω′
x,n .

Taking the difference of the two expressions one finds that

Hn+1(x) = ωx,nHn(x − 1) + ω′
x,nHn(x).

In other words, H is the random average process introduced by Ferrari and Fontes
[8]. The initial conditions are given by

H0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0,
x∑

y=1

Eωη0(y) if x > 0, and

0∑

y=x+1

Eωη0(y) if x < 0.

The claim now follows by applying [20, Theorem 4.1] and the characterization on
p. 13 of [20]. ([20, Theorem 4.1] as reproduced from [2, Theorem 2.1] where the
limiting stochastic heat equation is slightly altered because the process studied was
H�nt�(�nvt� + �r√n�) − H0(�r√n�)). �

Proof of Theorem1.7 Now, we have β = α/(v(1 − v)) = 4α. We will write pkx,y for
the k-step averaged transition. For t � 0 define

Y (t) =
∑

x>0

η0(x)∑

j=1

1{Xx, j
�t� � �vt� } −

∑

x�0

η0(x)∑

j=1

1{Xx, j
�t� > �vt� }.

By stationarity

EωYn(t, 0) − EωYn(s, 0) = EωY (nt) − EωY (ns)

has the same distribution as the Eω-mean of

Y ′ =
∑

x>0

η0(x)∑

j=1

1{Xx, j
�nt�−�ns� � �nvt� − �nvs� } −

∑

x�0

η0(x)∑

j=1

1{Xx, j
�nt�−�ns� > �nvt� − �nvs� }.
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The difference |Y ′ − Y (�nt� − �ns�)| is bounded by the number of particles
that are at time �nt� − �ns� between �nvt� − �nvs� and �(�nt� − �ns�)v�. Since
|�nvt� − �nvs� − �(�nt� − �ns�)v�| � 2 we are talking about at most 5 sites and,
consequently, E[|EωY ′ − EωY (�nt� − �ns�)|] � 5E[ f ] = 5. A similar reasoning
gives a bound on E[|Y (nt) − Y (�nt�)|] and E[|Y (ns) − Y (�ns�)|]. Therefore,

lim
n→∞

1√
n

Var
(
EωY (�nt� − �ns�)) = lim

n→∞
1√
n

Var
(
EωYn(t, 0) − EωYn(s, 0)

)

= lim
n→∞

1√
n

[
Var

(
EωY (�nt�)) + Var

(
EωY (�ns�)) − 2Cov

(
EωYn(s, 0), E

ωYn(t, 0)
)]

.

Hence, it is enough to prove that

lim
n→∞

1√
n

Var
(
EωY (n)

) = 1√
2π

(
1
4α

−1 − 1
)
.

Since
EωY (2n + 1) − EωY (2n) = − f (Tn,2nω)ωn,2n

we see that it is enough to prove the above limit along the subsequence of even
integers.

Let

h(ω) = f (T1,0ω)ω′
1,0ω

′
1,1 − f (ω)ω0,0ω1,1.

Then E(h) = 0, E(h2) = 1
8α − 1

2 (here we use Corollary 1.3 and p0 = p1 = 1/2),
and

EωY (2n + 2) − EωY (2n) = h(Tn,2nω).

Let c0 = Var( f ) = β−1 − 1. To compute Eh(ω)h(Tn,2nω) write

h(ω) = ( f (T1,0ω) − 1)ω′
1,0ω

′
1,1 − ( f (ω) − 1)ω0,0ω1,1 + ω′

1,0ω
′
1,1 − ω0,0ω1,1

and

h(Tn,2nω) =
∑

−n+1�x�n+1

( f (Tx,0ω) − 1)π0,2n(x, n + 1)ω′
n+1,2nω

′
n+1,2n+1

−
∑

−n�y�n

( f (Ty,0ω) − 1)π0,2n(y, n)ωn,2nωn+1,2n+1

+
∑

−n+1�x�n+1

π0,2n(x, n + 1)ω′
n+1,2nω

′
n+1,2n+1

−
∑

−n�y�n

π0,2n(y, n)ωn,2nωn+1,2n+1.
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Due to S−∞,−1-measurability the f -terms are independent of the ω’s. Also, dis-
tinct shifts are uncorrelated by Corollary 1.3. Multiplying these terms together and
separating the expectations of the factors on levels 2n and 2n + 1 leads to

Eh(ω)h(Tn,2nω) = 1
4c0Eπ0,2n(1, n + 1)ω′

1,0ω
′
1,1 (6.1)

− 1
4c0Eπ0,2n(0, n + 1)ω0,0ω1,1 (6.2)

− 1
4c0Eπ0,2n(1, n)ω′

1,0ω
′
1,1 (6.3)

+ 1
4c0Eπ0,2n(0, n)ω0,0ω1,1 (6.4)

+ 1
4

∑

−n+1�x�n+1

Eπ0,2n(x, n + 1)
(
ω′
1,0ω

′
1,1 − ω0,0ω1,1

)
(6.5)

− 1
4

∑

−n�y�n

Eπ0,2n(y, n)
(
ω′
1,0ω

′
1,1 − ω0,0ω1,1

)
. (6.6)

Thinking through the possible jumps shows that the terms in (6.5) and (6.6) survive
only for x, y ∈ {0, 1}. And some of these terms can be combinedwith the ones above.
This gives

Eh(ω)h(Tn,2nω) = 1
4 (c0 + 1)Eπ0,2n(1, n + 1)ω′

1,0ω
′
1,1 (6.7)

− 1
4 (c0 + 1)Eπ0,2n(0, n + 1)ω0,0ω1,1 (6.8)

− 1
4 (c0 + 1)Eπ0,2n(1, n)ω′

1,0ω
′
1,1 (6.9)

+ 1
4 (c0 + 1)Eπ0,2n(0, n)ω0,0ω1,1 (6.10)

+ 1
4E

[
π0,2n(0, n + 1)ω′

1,0ω
′
1,1 − π0,2n(1, n + 1)ω0,0ω1,1

]

(6.11)

− 1
4E

[
π0,2n(0, n)ω′

1,0ω
′
1,1 − π0,2n(1, n)ω0,0ω1,1

]
. (6.12)

Now transform each term. For example, term (6.7) becomes

(6.7)

= 1
4 (c0 + 1)E

[(
ω′
1,0ω

′
1,1 p

2n−2
1,n+1 + ω′

1,0ω1,1 p
2n−2
2,n+1 + ω1,0ω

′
2,1 p

2n−2
2,n+1 + ω1,0ω1,1 p

2n−2
3,n+1

)
ω′
1,0ω

′
1,1

]

= 1
4 (c0 + 1)

{
( 12 − α)2 p2n−2

1,n+1 + ( 34α − α2)p2n−2
2,n+1 + 1

4αp2n−2
3,n+1

}
.

After these steps we get

Eh(ω)h(Tn,2nω)

= 1
4 (c0 + 1)

[
− 1

4α(p2n−2
0,n+1 + p2n−2

0,n−3)

+ (2α2 − 3
2α + 1

4 )(p2n−2
0,n + p2n−2

0,n−2) + (−4α2 + 7
2α − 1

2 )p2n−2
0,n−1

]

+ 1
4

[
1
16 (p2n−2

0,n+1 + p2n−2
0,n−3) + ( 18 − 1

2α)(p2n−2
0,n + p2n−2

0,n−2) + (α − 3
8 )p2n−2

0,n−1

]
.
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Letting Xk denote the (averaged) Markov chain with transition px,y , introduce Zk =
X2k − kwith transition r0,0 = 1/2, r0,±1 = 1/4. For higher order transitions p2n−2

0,n+i =
rn−1
i+1 . Replace the p’s with r ’s and combine them using symmetry: rn−1

2 = rn−1
−2 , etc.

Then

Eh(ω)h(Tn,2nω) = 1
4 (c0 + 1)

[
1
2α(rn−1

0 − rn−1
2 ) − (4α2 − 3α + 1

2 )(r
n−1
0 − rn−1

1 )
]

+ 1
4

[
− 1

8 (r
n−1
0 − rn−1

2 ) + (α − 1
4 )(r

n−1
0 − rn−1

1 )
]

= 1
4 (

1
2 − 1

8α
−1)(rn−1

0 − rn−1
1 ) (6.13)

where in the last step we used c0 + 1 = (4α)−1.
Use the potential kernel aZ of the r -walk: the variance is 1/2 so aZ (x) = 2|x |.

From [22] and symmetry, aZ (x) = limm→∞ aZ
m(x) with

aZ
m(x) =

m∑

k=0

(rk0,0 − rkx,0) =
m∑

k=0

(rk0 − rkx ). (6.14)

Then

Var
(
EωY (2n)

) = Var

[ n−1∑

k=0

h(Tk,2kω)

]

= nE(h2) + 2
n−1∑

k=1

(n − k)Eh(ω)h(Tk,2kω)

= (
1
16α

−1 − 1
4

)[
2n −

n−1∑

k=1

(n − k)(rk−1
0 − rk−1

1 )

]

= (
1
16α

−1 − 1
4

)[
2n −

n−1∑

j=1

j∑

k=1

(rk−1
0 − rk−1

1 )

]

= (
1
16α

−1 − 1
4

)[
naZ (1) −

n−1∑

j=1

aZ
j−1(1)

]]

= (
1
16α

−1 − 1
4

)[
aZ (1) +

n−1∑

j=1

(aZ (1) − aZ
j−1(1))

]
. (6.15)

Let us look at aZ
k (x). The characteristic function is

ζ(θ) =
∑

x

rxe
ixθ = 1

2 (1 + cos θ).

By symmetry:



Independent Particles in a Dynamical Random Environment 119

aZ
m(x) =

m∑

k=0

(rk0 − rkx ) =
m∑

k=0

1

2π

∫ π

−π

(
ζk(θ) − e−i xθζk(θ)

)
dθ

= 1

2π

∫ π

−π

1 − cos xθ

1 − ζ(θ)

(
1 − ζm+1(θ)

)
dθ

= 2

2π

∫ π

−π

1 − cos xθ

1 − cos θ

(
1 − ζm+1(θ)

)
dθ

= 2|x | − 1

π

∫ π

−π

1 − cos xθ

1 − cos θ

(
1 + cos θ

2

)m+1

dθ.

The value of the first integral above is on p. 61 in [22]. But actually we only need
x = 1:

aZ
m(1) = aZ (1) − 1

π

∫ π

−π

(
1 + cos θ

2

)m+1

dθ = aZ (1) − 2

π

∫ π/2

−π/2
cos2m+2 x dx

= aZ (1) − 2
m+1∏

�=1

(
1 − 1

2�

)
= aZ (1) − 2

(m + 1)!
m+1∏

�=1

(� − 1
2 ).

Put this back into (6.15):

Var
(
EωY (2n)

) = (
1
16α

−1 − 1
4

)[
aZ (1) +

n−1∑

j=1

2

j !
j∏

�=1

(� − 1
2 )

]

= (
1
8α

−1 − 1
2

)[
1 +

n−1∑

j=1

j−1/2

� j (−1/2) · (−1/2)

]
.

Above we used the definition

�m(x) = m!mx

x(x + 1) · · · (x + m)
.

According to p. 461 of [23], �m(x) → �(x) for x /∈ Z−. Plugging back into the
above:

Var
(
EωY (2n)

) = (
1
8α

−1 − 1
2

)
4
√
n

[
1

4
√
n

+ 1

2
√
n

n−1∑

j=1

j−1/2

−� j (−1/2)

]

∼ √
2n · √

2
(
1
4α

−1 − 1
) · 1

−�(−1/2)

= √
2n · √

2
(
1
4α

−1 − 1
) · 1

2
√

π
.

The theorem is proved. �
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We close this section with a remark regarding the expected limit of the quenched
mean process in the stationary case.

In the setting of Theorem 1.7 the random average process H from the proof of
Theorem 1.6 has the initial profile

H0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0,
x∑

y=1

f (Ty,0ω) if x > 0, and

0∑

y=x+1

Eω f (Ty,0ω) if x < 0.

Thus, to extend the convergence result of Theorem 1.6 to include the station-
ary case we need to prove a functional central limit theorem for the partial sums∑x

y=1 f (Ty,0ω).
Finally, note that if indeed the claim of Theorem 1.6 holds in the stationary setting

of Theorem 1.7, then we would have

σ2
0 = Var( f ) = 1

β
− 1 = 1

4α
− 1 = 1/4 − α

α
= ρ20σ

2
D

α
.

(Recall that we assumed the mean ρ0 = 1 in Theorem 1.7). Thus one would have

E[z(s, 0)z(t, 0)] = ρ20σ
2
D

α

σ√
2π

(
√
t + √

s − √|t − s| )

= 1

2
√
2π

(
1
4α

−1 − 1
)
(
√
t + √

s − √|t − s| ),

as stated in Theorem 1.7.
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