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Abstract: We study space-time fluctuations around a characteristic line for a
one-dimensional interacting system known as the random average process. The state
of this system is a real-valued function on the integers. New values of the function are
created by averaging previous values with random weights. The fluctuations analyzed
occur on the scale n1/4, where n is the ratio of macroscopic and microscopic scales in the
system. The limits of the fluctuations are described by a family of Gaussian processes.
In cases of known product-form invariant distributions, this limit is a two-parameter
process whose time marginals are fractional Brownian motions with Hurst parameter
1/4. Along the way we study the limits of quenched mean processes for a random walk
in a space-time random environment. These limits also happen at scale n1/4 and are
described by certain Gaussian processes that we identify. In particular, when we look at
a backward quenched mean process, the limit process is the solution of a stochastic heat
equation.

1. Introduction

Fluctuations for asymmetric interacting systems. An asymmetric interacting system is
a random process στ = {στ (k) : k ∈ K} of many components στ (k) that influence each
others’ evolution. Asymmetry means here that the components have an average drift in
some spatial direction. Such processes are called interacting particle systems because
often these components can be thought of as particles.

To orient the reader, let us first think of a single random walk {Xτ : τ = 0, 1, 2, . . . }
that evolves by itself. For random walk we scale both space and time by n because on
this scale we see the long-term velocity: n−1 X�nt� → tv as n → ∞, where v = E X1.
The random walk is diffusive which means that its fluctuations occur on the scale n1/2, as
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revealed by the classical central limit theorem: n−1/2(X�nt� − ntv) converges weakly to
a Gaussian distribution. The Gaussian limit is universal here because it arises regardless
of the choice of step distribution for the random walk, as long as a square-integrability
hypothesis is satisfied.

For asymmetric interacting systems we typically also scale time and space by the
same factor n, and this is known as Euler scaling. However, in certain classes of one-
dimensional asymmetric interacting systems the random evolution produces fluctuations
of smaller order than the natural diffusive scale. Two types of such phenomena have been
discovered.

(i) In Hammersley’s process, in asymmetric exclusion, and in some other closely
related systems, dynamical fluctuations occur on the scale n1/3. Currently known rigor-
ous results suggest that the Tracy-Widom distributions from random matrix theory are
the universal limits of these n1/3 fluctuations.

The seminal works in this context are by Baik, Deift and Johansson [3] on Ham-
mersley’s process and by Johansson [19] on the exclusion process. We should point
out though that [3] does not explicitly discuss Hammersley’s process, but instead the
maximal number of planar Poisson points on an increasing path in a rectangle. One can
intrepret the results in [3] as fluctuation results for Hammersley’s process with a special
initial configuration. The connection between the increasing path model and Hammers-
ley’s process goes back to Hammersley’s paper [18]. It was first utilized by Aldous and
Diaconis [1] (who also named the process), and then further in the papers [26, 28].

(ii) The second type has fluctuations of the order n1/4 and limits described by a family
of self-similar Gaussian processes that includes fractional Brownian motion with Hurst
parameter 1

4 . This result was first proved for a system of independent random walks [30].
One of the main results of the current paper shows that the n1/4 fluctuations also appear
in a family of interacting systems called random average processes in one dimension.
The same family of limiting Gaussian processes appears here too, suggesting that these
limits are universal for some class of interacting systems.

The random average processes (RAP) studied in the present paper describe a random
real-valued function on the integers whose values evolve by jumping to random convex
combinations of values in a finite neighborhood. It could be thought of as a caricature
model for an interface between two phases on the plane, hence we call the state a height
function. RAP is related to the so-called linear systems discussed in Chapter IX of Ligg-
ett’s monograph [22]. RAP was introduced by Ferrari and Fontes [14] who studied the
fluctuations from initial linear slopes. In particular, they discovered that the height over
the origin satisfies a central limit theorem in the time scale t1/4. The Ferrari-Fontes
results suggested RAP to us as a fruitful place to investigate whether the n1/4 fluctuation
picture discovered in [30] for independent walks had any claim to universality.

There are two ways to see the lower order dynamical fluctuations.

(1) One can take deterministic initial conditions so that only dynamical randomness is
present.

(2) Even if the initial state is random with central limit scale fluctuations, one can
find the lower order fluctuations by looking at the evolution of the process along a
characteristic curve.

Articles [3] and [19] studied the evolutions of special deterministic initial states of
Hammersley’s process and the exclusion process. Recently Ferrari and Spohn [15] have
extended this analysis to the fluctuations across a characteristic in a stationary exclusion
process. The general nonequilibrium hydrodynamic limit situation is still out of reach
for these models. [30] contains a tail bound for Hammersley’s process that suggests
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n1/3 scaling also in the nonequilibrium situation, including along a shock which can be
regarded as a “generalized” characteristic.

Our results for the random average process are for the general hydrodynamic limit
setting. The initial increments of the random height function are assumed independent
and subject to some moment bounds. Their means and variances must vary sufficiently
regularly to satisfy a Hölder condition. Deterministic initial increments qualify here as
a special case of independent.

The classification of the systems mentioned above (Hammersley, exclusion, inde-
pendent walks, RAP) into n1/3 and n1/4 fluctuations coincides with their classification
according to type of macroscopic equation. Independent particles and RAP are mac-
roscopically governed by linear first-order partial differential equations ut + bux = 0.
In contrast, macroscopic evolutions of Hammersley’s process and the exclusion pro-
cess obey genuinely nonlinear Hamilton-Jacobi equations ut + f (ux ) = 0 that create
shocks.

Suppose we start off one of these systems so that the initial state fluctuates on the
n1/2 spatial scale, for example in a stationary distribution. Then the fluctuations of the
entire system on the n1/2 scale simply consist of initial fluctuations transported along
the deterministic characteristics of the macroscopic equation. This is a consequence of
the lower order of dynamical fluctuations. When the macroscopic equation is linear this
is the whole picture of diffusive fluctuations. In the nonlinear case the behavior at the
shocks (where characteristics merge) also needs to be resolved. This has been done for
the exclusion process [25] and for Hammersley’s process [29].

Random walk in a space-time random environment. Analysis of the random average
process utilizes a dual description in terms of backward random walks in a space-time
random environment. Investigation of the fluctuations of RAP leads to a study of fluc-
tuations of these random walks, both quenched invariance principles for the walk itself
and limits for the quenched mean process. The quenched invariance principles have
been reported elsewhere [24]. The results for the quenched mean process are included in
the present paper because they are intimately connected to the random average process
results.

We look at two types of processes of quenched means. We call them forward and
backward. In the forward case the initial point of the walk is fixed, and the walk runs
for a specified amount of time on the space-time lattice. In the backward case the initial
point moves along a characteristic, and the walk runs until it reaches the horizontal axis.
Furthermore, in both cases we let the starting point vary horizontally (spatially), and so
we have a space-time process. In both cases we describe a limiting Gaussian process,
when space is scaled by n1/2, time by n, and the magnitude of the fluctuations by n1/4.
In particular, in the backward case we find a limit process that solves the stochastic heat
equation.

There are two earlier papers on the quenched mean of this random walk in a space-time
random environment. These previous results were proved under assumptions of small
enough noise and finitely many possible values for the random probabilities. Bernabei
[5] showed that the centered quenched mean, normalized by its own standard deviation,
converges to a normal variable. Then separately he showed that this standard deviation
is bounded above and below on the order n1/4. Bernabei has results also in dimension 2,
and also for the quenched covariance of the walk. Boldrighini and Pellegrinotti [6] also
proved a normal limit in the scale n1/4 for what they term the “correction” caused by
the random environment on the mean of a test function.
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Finite-dimensional versus process-level convergence. Our main results all state that the
finite-dimensional distributions of a process of interest converge to the finite-dimen-
sional distributions of a certain Gaussian process specified by its covariance function.
We have not proved process-level tightness, except in the case of forward quenched
means for the random walks where we compute a bound on the sixth moment of the
process increment.

Further relevant literature. It is not clear what exactly are the systems “closely related”
to Hammersley’s process or exclusion process, alluded to in the beginning of the Intro-
duction, that share the n1/3 fluctuations and Tracy-Widom limits. The processes for
which rigorous proofs exist all have an underlying representation in terms of a last-pas-
sage percolation model. Another such example is “oriented digital boiling” studied by
Gravner, Tracy and Widom [16]. (This model was studied earlier in [27] and [20] under
different names.)

Fluctuations of the current were initially studied from the perspective of a moving
observer traveling with a general speed. The fluctuations are diffusive, and the limiting
variance is a function of the speed of the observer. The special nature of the characteristic
speed manifests itself in the vanishing of the limiting variance on this diffusive scale.
The early paper of Ferrari and Fontes [13] treated the asymmetric exclusion process.
Their work was extended by Balázs [4] to a class of deposition models that includes the
much-studied zero range process and a generalization called the bricklayers’ process.

Work on the fluctuations of Hammersley’s process and the exclusion process has
connections to several parts of mathematics. Overviews of some of these links appear
in papers [2, 10, 17]. General treatments of large scale behavior of interacting random
systems can be found in [9, 21–23, 32, 33].

Organization of the paper. We begin with the description of the random average pro-
cess and the limit theorem for it in Sect. 2. Section 3 describes the random walk in a
space-time random environment and the limit theorems for quenched mean processes.
The proofs begin with Sect. 4 that lays out some preliminary facts on random walks.
Sections 5 and 6 prove the fluctuation results for random walk, and the final Sect. 7
proves the limit theorem for RAP.

The reader only interested in the random walk can read Sect. 3 and the proofs for the
random walk limits independently of the rest of the paper, except for certain definitions
and a hypothesis which have been labeled. The RAP results can be read independently
of the random walk, but their proofs depend on the random walk results.

Notation. We summarize here some notation and conventions for quick reference. The
set of natural numbers is N = {1, 2, 3, . . . }, while Z+ = {0, 1, 2, 3, . . . } and R+ =
[0,∞). On the two dimensional integer lattice Z

2 standard basis vectors are e1 = (1, 0)

and e2 = (0, 1). The e2-direction represents time.
We need several different probability measures and corresponding expectation oper-

ators. P (with expectation E) is the probability measure on the space � of environments
ω. P is an i.i.d. product measure across the coordinates indexed by the space-time lattice
Z

2. P (with expectation E) is the probability measure of the initial state of the random
average process. Eω is used to emphasize that an expectation over initial states is taken
with a fixed environment ω. Jointly the environment and initial state are independent, so
the joint measure is the product P ⊗ P. Pω (with expectation Eω) is the quenched path
measure of the random walks in environment ω. The annealed measure for the walks
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is P = ∫
Pω

P(dω). Additionally, we use P and E for generic probability measures
and expectations for processes that are not part of this specific set-up, such as Brownian
motions and limiting Gaussian processes.

The environments ω ∈ � are configurations ω = (ωx,τ : (x, τ ) ∈ Z
2) of vectors

indexed by the space-time lattice Z
2. Each element ωx,τ is a probability vector of length

2M + 1, denoted also by uτ (x) = ωx,τ , and in terms of coordinates uτ (x) = (uτ (x, y) :
−M ≤ y ≤ M). The environment at a fixed time value τ is ω̄τ = (ωx,τ : x ∈ Z).
Translations on � are defined by (Tx,τω)y,s = ωx+y,τ+s .

�x� = max{n ∈ Z : n ≤ x} is the lower integer part of a real x . Throughout, C
denotes a constant whose exact value is immaterial and can change from line to line.
The density and cumulative distribution function of the centered Gaussian distribution
with variance σ 2 are denoted by ϕσ 2(x) and �σ 2(x). {B(t) : t ≥ 0} is one-dimen-
sional standard Brownian motion, in other words the Gaussian process with covariance
E B(s)B(t) = s ∧ t .

2. The Random Average Process

The state of the random average process (RAP) is a height function σ : Z → R. It can
also be thought of as a sequence σ = (σ (i) : i ∈ Z) ∈ R

Z, where σ(i) is the height of
an interface above site i . The state evolves in discrete time according to the following
rule. At each time point τ = 1, 2, 3, . . . and at each site k ∈ Z, a random probability
vector uτ (k) = (uτ (k, j) : −M ≤ j ≤ M) of length 2M + 1 is drawn. Given the state
στ−1 = (στ−1(i) : i ∈ Z) at time τ − 1, the height value at site k is then updated to

στ (k) =
∑

j :| j |≤M

uτ (k, j)στ−1(k + j). (2.1)

This update is performed independently at each site k to form the state στ = (στ (k) :
k ∈ Z) at time τ . The same step is repeated at the next time τ + 1 with new independent
draws of the probability vectors.

So, given an initial state σ0, the process στ is constructed with a collection {uτ (k) :
τ ∈ N, k ∈ Z} of independent and identically distributed random vectors. These random
vectors are defined on a probability space (�,S, P). If σ0 is also random with distri-
bution P, then σ0 and the vectors {uτ (k)} are independent, in other words the joint
distribution is P ⊗ P. We write uω

τ (k) to make explicit the dependence on ω ∈ �. E will
denote expectation under the measure P. M is the range and is a fixed finite parameter
of the model. P-almost surely each random vector uτ (k) satisfies

0 ≤ uτ (k, j) ≤ 1 for all −M ≤ j ≤ M , and
M∑

j=−M

uτ (k, j) = 1.

It is often convenient to allow values uτ (k, j) for all j . Then automatically uτ (k, j) = 0
for | j | > M .

Let

p(0, j) = Eu0(0, j)

denote the averaged probabilities. Throughout the paper we make two fundamental
assumptions.
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(i) First, there is no integer h > 1 such that, for some x ∈ Z,

∑

k∈Z

p(0, x + kh) = 1.

This is also expressed by saying that the span of the random walk with jump probabilities
p(0, j) is 1 [11, p. 129]. It follows that the group generated by {x ∈ Z : p(0, x) > 0}
is all of Z, in other words this walk is aperiodic in Spitzer’s terminology [31].

(ii) Second, we assume that

P{max
j

u0(0, j) < 1} > 0. (2.2)

If this assumption fails, then P-almost surely for each (k, τ ) there exists j = j (k, τ ) such
that uτ (k, j) = 1. No averaging happens, but instead στ (k) adopts the value στ−1(k + j).
The behavior is then different from that described by our results.

No further hypotheses are required of the distribution P on the probability vectors.
Deterministic weights uω

τ (k, j) ≡ p(0, j) are also admissible, in which case (2.2)
requires max j p(0, j) < 1.

In addition to the height process στ we also consider the increment process ητ =
(ητ (i) : i ∈ Z) defined by

ητ (i) = στ (i) − στ (i − 1).

From (2.1) one can deduce a similar linear equation for the evolution of the increment
process. However, the weights are not necessarily nonnegative, and even if they are, they
do not necessarily sum to one.

Next we define several constants that appear in the results.

D(ω) =
∑

x∈Z

x uω
0 (0, x) (2.3)

is the drift at the origin. Its mean is V = E(D) and variance

σ 2
D = E[(D − V )2]. (2.4)

A variance under averaged probabilities is computed by

σ 2
a =

∑

x∈Z

(x − V )2 p(0, x). (2.5)

Define random and averaged characteristic functions by

φω(t) =
∑

x∈Z

uω
0 (0, x)eitx and φa(t) = Eφω(t) =

∑

x∈Z

p(0, x)eitx , (2.6)

and then further

λ(t) = E[ |φω(t)|2 ] and λ̄(t) = |φa(t)|2. (2.7)

Finally, define a positive constant β by

β = 1

2π

∫ π

−π

1 − λ(t)

1 − λ̄(t)
dt. (2.8)
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The assumption of span 1 implies that |φa(t)| = 1 only at multiples of 2π . Hence the
integrand above is positive at t �= 0. Separately one can check that the integrand has a
finite limit as t → 0. Thus β is well-defined and finite.

In Sect. 4 we can give these constants, especially β, more probabilistic meaning from
the perspective of the underlying random walk in random environment.

For the limit theorems we consider a sequence σ n
τ of the random average processes,

indexed by n ∈ N = {1, 2, 3, . . . }. Initially we set σ n
0 (0) = 0. For each n we assume

that the initial increments
{
ηn

0(i) : i ∈ Z
}

are independent random variables, with

E[ηn
0(i)] = �(i/n) and Var[ηn

0(i)] = v(i/n). (2.9)

The functions � and v that appear above are assumed to be uniformly bounded functions
on R and to satisfy this local Hölder continuity:

For each compact interval [a, b] ⊆ R there exist

C = C(a, b) < ∞ and γ = γ (a, b) > 1/2 such that (2.10)

|�(x) − �(y)| + |v(x) − v(y)| ≤ C |x − y|γ for x, y ∈ [a, b].
The function v must be nonnegative, but the sign of � is not restricted. Both functions
are allowed to vanish. In particular, our hypotheses permit deterministic initial heights
which implies that v vanishes identically.

The distribution on initial heights and increments described above is denoted by P.
We make this uniform moment hypothesis on the increments:

there exists α > 0 such that sup
n∈N, i∈Z

E
[
|ηn

0(i)|2+α
]

< ∞. (2.11)

We assume that the processes σ n
τ are all defined on the same probability space. The

environments ω that drive the dynamics are independent of the initial states {σ n
0 }, so the

joint distribution of (ω, {σ n
0 }) is P ⊗ P. When computing an expectation under a fixed

ω we write Eω.
On the larger space and time scale the height function is simply rigidly translated

at speed b = −V , and the same is also true of the central limit fluctuations of the ini-
tial height function. Precisely speaking, define a function U on R by U (0) = 0 and
U ′(x) = �(x). Let (x, t) ∈ R × R+. The assumptions made thus far imply that both

n−1σ n�nt�(�nx�) −→ U (x − bt) (2.12)

and

σ n�nt�(�nx�) − nU (x − bt)√
n

− σ n
0 (�nx� − �nbt�) − nU (x − bt)√

n
−→ 0 (2.13)

in probability, as n → ∞. (We will not give a proof. This follows from easier versions
of the estimates in the paper.) Limit (2.12) is the “hydrodynamic limit” of the process.
The large scale evolution of the height process is thus governed by the linear transport
equation

wt + bwx = 0.

This equation is uniquely solved by w(x, t) = U (x − bt) given the initial function
w(x, 0) = U (x). The lines x(t) = x + bt are the characteristics of this equation, the
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curves along which the equation carries information. Limit (2.13) says that fluctua-
tions on the diffusive scale do not include any randomness from the evolution, only a
translation of initial fluctuations along characteristics.

We find interesting height fluctuations along a macroscopic characteristic line x(t) =
ȳ + bt , and around such a line on the microscopic spatial scale

√
n. The magnitude of

these fluctuations is of the order n1/4, so we study the process

zn(t, r) = n−1/4{σ n�nt�(�n ȳ� + �r
√

n � + �ntb�) − σ n
0 (�n ȳ� + �r

√
n �)},

indexed by (t, r) ∈ R+ × R, for a fixed ȳ ∈ R. In terms of the increment process ηn
τ ,

zn(t, 0) is the net flow from right to left across the discrete characteristic �n ȳ� + �nsb�,
during the time interval 0 ≤ s ≤ t .

Next we describe the limit of zn . Recall the constants defined in (2.4), (2.5), and
(2.8). Combine them into a new constant

κ = σ 2
D

βσ 2
a

. (2.14)

Let {B(t) : t ≥ 0} be one-dimensional standard Brownian motion. Define two functions
�q and �0 on (R+ × R) × (R+ × R):

�q((s, q), (t, r)) = κ

2

∫ σ 2
a (t+s)

σ 2
a |t−s|

1√
2πv

exp
{
− 1

2v
(q − r)2

}
dv (2.15)

and

�0((s, q), (t, r)) =
∫ ∞

q∨r
P[σa B(s) > x − q]P[σa B(t) > x − r ] dx

−
{

1{r>q}
∫ r

q
P[σa B(s) > x − q]P[σa B(t) ≤ x − r ] dx

+1{q>r}
∫ q

r
P[σa B(s) ≤ x − q]P[σa B(t) > x − r ] dx

}

+
∫ q∧r

−∞
P[σa B(s) ≤ x − q]P[σa B(t) ≤ x − r ] dx . (2.16)

The boundary values are such that �q((s, q), (t, r)) = �0((s, q), (t, r)) = 0 if either
s = 0 or t = 0. We will see later that �q is the limiting covariance of the backward
quenched mean process of a related random walk in random environment. �0 is the
covariance for fluctuations contributed by the initial increments of the random average
process. (Hence the subscripts q for quenched and 0 for initial time. The subscript on
�q has nothing to do with the argument (s, q).)

The integral expressions above are the form in which �q and �0 appear in the proofs.
For �q the key point is the limit (5.19) which is evaluated earlier in (4.5). �0 arises in
Proposition 7.1.

Here are alternative succinct representations for �q and �0. Denote the centered
Gaussian density with variance σ 2 by

ϕσ 2(x) = 1√
2πσ 2

exp
{
− 1

2σ 2 x2
}

(2.17)
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and its distribution function by �σ 2(x) = ∫ x
−∞ ϕσ 2(y) dy. Then define

�σ 2(x) = σ 2ϕσ 2(x) − x(1 − �σ 2(x)),

which is an antiderivative of �σ 2(x) − 1. In these terms,

�q((s, q), (t, r)) = κ�σ 2
a (t+s)

(|q − r |)− κ�σ 2
a |t−s|

(|q − r |)

and

�0((s, q), (t, r)) = �σ 2
a s

(|q − r |) + �σ 2
a t

(|q − r |)− �σ 2
a (t+s)

(|q − r |).
Theorem 2.1. Assume (2.2) and that the averaged probabilities p(0, j) = Euω

0 (0, j)
have lattice span 1. Let � and v be two uniformly bounded functions on R that satisfy
the local Hölder condition (2.10). For each n, let σ n

τ be a random average process nor-
malized by σ n

0 (0) = 0 and whose initial increments {ηn
0(i) : i ∈ Z} are independent and

satisfy (2.9) and (2.11). Assume the environments ω independent of the initial heights
{σ n

0 : n ∈ N}.
Fix ȳ ∈ R. Under the above assumptions the finite-dimensional distributions of the

process {zn(t, r) : (t, r) ∈ R+×R} converge weakly as n → ∞ to the finite-dimensional
distributions of the mean zero Gaussian process {z(t, r) : (t, r) ∈ R+ × R} specified by
the covariance

Ez(s, q)z(t, r) = �(ȳ)2�q((s, q), (t, r)) + v(ȳ)�0((s, q), (t, r)). (2.18)

The statement means that, given space-time points (t1, r1), . . . , (tk, rk), the R
k-val-

ued random vector (zn(t1, r1), . . . , zn(tk, rk)) converges in distribution to the random
vector (z(t1, r1), . . . , z(tk, rk)) as n → ∞. The theorem is also valid in cases where one
source of randomness has been turned off: if initial increments around �n ȳ� are deter-
ministic then v(ȳ) = 0, while if D(ω) ≡ V then σ 2

D = 0. The case σ 2
D = 0 contains as

a special case the one with deterministic weights uω
τ (k, j) ≡ p(0, j).

If we consider only temporal correlations with a fixed r , the formula for the covariance
is as follows:

Ez(s, r)z(t, r) = κσa√
2π

�(ȳ)2(√s + t − √
t − s

)

+
σa√
2π

v(ȳ)
(√

s +
√

t − √
s + t

)
for s < t . (2.19)

Remark 2.1. The covariances are central to our proofs but they do not illuminate the
behavior of the process z. Here is a stochastic integral representation of the Gaussian
process with covariance (2.18):

z(t, r) = �(ȳ)σa
√

κ

∫∫

[0,t]×R

ϕσ 2
a (t−s)(r − x) dW (s, x)

+
√

v(ȳ)

∫

R

sign(x − r)�σ 2
a t

(− |x − r | ) d B(x). (2.20)

Above W is a two-parameter Brownian motion defined on R+ × R, B is a one-param-
eter Brownian motion defined on R, and W and B are independent of each other. The
first integral represents the space-time noise created by the dynamics, and the second
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integral represents the initial noise propagated by the evolution. The equality in (2.20)
is equality in distribution of processes. It can be verified by checking that the Gaussian
process defined by the sum of the integrals has the covariance (2.18).

One can readily see the second integral in (2.20) arise as a sum in the proof. It is the
limit of Y n(t, r) defined below Eq. (7.1).

One can also check that the right-hand side of (2.20) is a weak solution of a stochastic
heat equation with two independent sources of noise:

zt = 1
2σ 2

a zrr + �(ȳ)σa
√

κ Ẇ + 1
2

√
v(ȳ)σ 2

a B ′′, z(0, r) ≡ 0. (2.21)

Ẇ is space-time white noise generated by the dynamics and B ′′ the second derivative
of the one-dimensional Brownian motion that represents initial noise. This equation has
to be interpreted in a weak sense through integration against smooth compactly sup-
ported test functions. We make a related remark below in Sect. 3.2 for limit processes
of quenched means of space-time RWRE.

The simplest RAP dynamics averages only two neighboring height values. By trans-
lating the indices, we can assume that p(0,−1) + p(0, 0) = 1. In this case the evolution
of increments is given by the equation

ητ (k) = uτ (k, 0)ητ−1(k) + uτ (k − 1,−1)ητ−1(k − 1). (2.22)

There is a queueing interpretation of sorts for this evolution. Suppose ητ−1(k) denotes
the amount of work that remains at station k at the end of cycle τ −1. Then during cycle
τ , the fraction uτ (k,−1) of this work is completed and moves on to station k + 1, while
the remaining fraction uτ (k, 0) stays at station k for further processing.

In this case we can explicitly evaluate the constant β in terms of the other quantities.
In a particular stationary situation we can also identify the temporal marginal of z in
(2.19) as a familiar process. (A probability distribution μ on the space Z

Z is an invariant
distribution for the increment process if it is the case that when η0 has μ distribution, so
does ητ for all times τ ∈ Z+.)

Proposition 2.2. Assume p(0,−1) + p(0, 0) = 1.

(a) Then

β = 1

σ 2
a

E[u0(0, 0)u0(0,−1)]. (2.23)

(b) Suppose further that the increment process ητ possesses an invariant distribution μ

in which the variables {η(i) : i ∈ Z} are i.i.d. with common mean � = Eμ[η(i)]
and variance v = Eμ[η(i)2] − �2. Then v = κ�2.

Suppose that in Theorem 2.1 each ηn
τ = ητ is a stationary process with marginal μ.

Then the limit process z has covariance

Ez(s, q)z(t, r) = κ�2
(
�σ 2

a s

(|q − r |) + �σ 2
a t

(|q − r |)− �σ 2
a |t−s|

(|q − r |)
)
.

(2.24)

In particular, for a fixed r the process {z(t, r) : t ∈ R+} has covariance

Ez(s, r)z(t, r) = σaκ�2

√
2π

(√
s +

√
t −√|t − s| ). (2.25)

In other words, process z(·, r) is fractional Brownian motion with Hurst parameter 1/4.
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To rephrase the connection (2.24)–(2.25), the process {z(t, r)} in (2.24) is a certain
two-parameter process whose marginals along the first parameter direction are fractional
Brownian motions.

Ferrari and Fontes [14] showed that given any slope ρ, the process ητ started from
deterministic increments η0(x) = ρx converges weakly to an invariant distribution. But
as is typical for interacting systems, there is little information about the invariant distribu-
tions in the general case. The next example gives a family of processes and i.i.d. invariant
distributions to show that part (b) of Proposition 2.2 is not vacuous. Presently we are not
aware of other explictly known invariant distributions for RAP.

Example 2.1. Fix integer parameters m > j > 0. Let {uτ (k,−1) : τ ∈ N, k ∈ Z} be
i.i.d. beta-distributed random variables with density

h(u) = (m − 1)!
( j − 1)!(m − j − 1)!u j−1(1 − u)m− j−1

on (0, 1). Set uτ (k, 0) = 1 − uτ (k,−1). Consider the evolution defined by (2.22)
with these weights. Then a family of invariant distributions for the increment process
ητ = (ητ (k) : k ∈ Z) is obtained by letting the variables {η(k)} be i.i.d. gamma
distributed with common density

f (x) = 1

(m − 1)!λe−λx (λx)m−1 (2.26)

on R+. The family of invariant distributions is parametrized by 0 < λ < ∞. Under this
distribution E[η(k)] = m/λ and Var[η(k)] = m/λ2.

One motivation for the present work was to investigate whether the limits found in
[30] for fluctuations along a characteristic for independent walks are instances of some
universal behavior. The present results are in agreement with those obtained for indepen-
dent walks. The common scaling is n1/4. In that paper only the case r = 0 of Theorem
2.1 was studied. For both independent walks and RAP the limit z(· , 0) is a mean-zero
Gaussian process with covariance of the type

Ez(s, 0)z(t, 0) = c1
(√

s + t − √
t − s

)
+ c2

(√
s +

√
t − √

s + t
)
,

where c1 is determined by the mean increment and c2 by the variance of the increment
locally around the initial point of the characteristic. Furthermore, as in Proposition 2.2(b),
for independent walks the limit process specializes to fractional Brownian motion if the
increment process is stationary.

These and other related results suggest several avenues of inquiry. In the introduction
we contrasted this picture of n1/4 fluctuations and fractional Brownian motion limits
with the n1/3 fluctuations and Tracy-Widom limits found in exclusion and Hammersley
processes. Obviously more classes of processes should be investigated to understand
better the demarcation between these two types. Also, there might be further classes
with different limits.

Above we assumed independent increments at time zero. It would be of interest to
see if relaxing this assumption leads to a change in the second part of the covariance
(2.18). [The first part comes from the random walks in the dual description and would
not be affected by the initial conditions.] However, without knowledge of some explicit
invariant distributions it is not clear what types of initial increment processes {η0(k)} are
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worth considering. Unfortunately finding explicit invariant distributions for interacting
systems seems often a matter of good fortune.

We conclude this section with the dual description of RAP which leads us to study
random walks in a space-time random environment. Given ω, let {Xi,τ

s : s ∈ Z+} denote
a random walk on Z that starts at Xi,τ

0 = i , and whose transition probabilities are given
by

Pω(Xi, τ
s+1 = y | Xi, τ

s = x) = uω
τ−s(x, y − x). (2.27)

Pω is the path measure of the walk Xi,τ
s , with expectation denoted by Eω. Comparison

of (2.1) and (2.27) gives

στ (i) =
∑

j

Pω(Xi, τ
1 = j | Xi, τ

0 = i)στ−1( j) = Eω
[
στ−1(Xi, τ

1 )
]
. (2.28)

Iteration and the Markov property of the walks Xi,τ
s then lead to

στ (i) = Eω
[
σ0(Xi, τ

τ )
]
. (2.29)

Note that the initial height function σ0 is a constant under the expectation Eω.
Let us add another coordinate to keep track of time and write X̄ i,τ

s = (Xi,τ
s , τ − s)

for s ≥ 0. Then X̄ i,τ
s is a random walk on the planar lattice Z

2 that always moves down
one step in the e2-direction, and if its current position is (x, n), the e1-coordinate of its
next position is x + y with probability un(x, y). We shall call it the backward random
walk in a random environment. In the next section we discuss this walk and its forward
counterpart.

3. Random Walk in a Space-Time Random Environment

3.1. Definition of the model. We consider here a particular random walk in random envi-
ronment (RWRE). The walk evolves on the planar integer lattice Z

2, which we think of
as space-time: the first component represents one-dimensional discrete space, and the
second represents discrete time. We denote by e2 the unit vector in the time-direction.
The walks will not be random in the e2-direction, but only in the spatial e1-direction.

We consider forward walks Z̄ i,τ
m and backward walks X̄ i,τ

m . The subscript m ∈ Z+ is
the time parameter of the walk and superscripts are initial points:

Z̄ i,τ
0 = X̄ i,τ

0 = (i, τ ) ∈ Z
2. (3.1)

The forward walks move deterministically up in time, while the backward walks move
deterministically down in time:

Z̄ i,τ
m = (Zi,τ

m , τ + m) and X̄ i,τ
m = (Xi,τ

m , τ − m) for m ≥ 0.

Since the time components of the walks are deterministic, only the spatial components
Zi,τ

m and Xi,τ
m are really relevant. We impose a finite range on the steps of the walks:

there is a fixed constant M such that
∣
∣Zi,τ

m+1 − Zi,τ
m

∣
∣ ≤ M and

∣
∣Xi,τ

m+1 − Xi,τ
m

∣
∣ ≤ M. (3.2)
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A note of advance justification for the setting: The backward walks are the ones rel-
evant to the random average process. Distributions of forward and backward walks are
obvious mappings of each other. However, we will be interested in the quenched mean
processes of the walks as we vary the final time for the forward walk or the initial space-
time point for the backward walk. The results for the forward walk form an interesting
point of comparison to the backward walk, even though they will not be used to analyze
the random average process.

An environment is a configuration of probability vectors ω = (uτ (x) : (x, τ ) ∈ Z
2
)
,

where each vector uτ (x) = (uτ (x, y) : −M ≤ y ≤ M) satisfies

0 ≤ uτ (x, y) ≤ 1 for all −M ≤ y ≤ M , and
M∑

y=−M

uτ (x, y) = 1.

An environment ω is a sample point of the probability space (�,S, P). The sample
space is the product space � = PZ

2
, where P is the space of probability vectors of

length 2M + 1, and S is the product σ -field on � induced by the Borel sets on P .
Throughout, we assume that P is a product probability measure on � such that the
vectors {uτ (x) : (x, τ ) ∈ Z

2} are independent and identically distributed. Expectation
under P is denoted by E. When for notational convenience we wish to think of uτ (x) as
an infinite vector, then uτ (x, y) = 0 for |y| > M . We write uω

τ (x, y) to make explicit the
environment ω, and also ωx,τ = uτ (x) for the environment at space-time point (x, τ ).

Fix an environment ω and an initial point (i, τ ). The forward and backward walks
Z̄ i,τ

m and X̄ i,τ
m (m ≥ 0) are defined as canonical Z

2-valued Markov chains on their path
spaces under the measure Pω determined by the conditions

Pω{Z̄ i, τ
0 = (i, τ )} = 1,

Pω{Z̄ i, τ
s+1 = (y, τ + s + 1) | Z̄ i, τ

s = (x, τ + s)} = uτ+s(x, y − x)

for the forward walk, and by

Pω{X̄ i, τ
0 = (i, τ )} = 1,

Pω{X̄ i, τ
s+1 = (y, τ − s − 1) | X̄ i, τ

s = (x, τ − s)} = uτ−s(x, y − x)

for the backward walk. By dropping the time components τ , τ ± s and τ ± s ± 1 from
the equations we get the corresponding properties for the spatial walks Zi, τ

s and Xi, τ
s .

When we consider many walks under a common environment ω, it will be notationally
convenient to attach the initial point (i, τ ) to the walk and only the environment ω to
the measure Pω.

Pω is called the quenched distribution, and expectation under Pω is denoted by Eω.
The annealed distribution and expectation are P(·) = EPω(·) and E(·) = EEω(·).
Under P both Xi,τ

m and Zi,τ
m are ordinary homogeneous random walks on Z with jump

probabilities p(i, i + j) = p(0, j) = Eu0(0, j). These walks satisfy the law of large
numbers with velocity

V =
∑

j∈Z

p(0, j) j. (3.3)

As for RAP, we also use the notation b = −V .
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3.2. Limits for quenched mean processes. We start by stating the quenched invariance
principle for the space-time RWRE. {B(t) : t ≥ 0} denotes standard one-dimensional
Brownian motion. DR[0,∞) is the space of real-valued cadlag functions on [0,∞)

with the standard Skorohod metric [12]. Recall the definition (2.5) of the variance σ 2
a

of the annealed walk, and assumption (2.2) that guarantees that the quenched walk has
stochastic noise.

Theorem 3.1 [24]. Assume (2.2). We have these bounds on the variance of the quenched
mean: there exist constants C1, C2 such that for all n,

C1n1/2 ≤ E
[
(Eω(X0,0

n ) − nV )2] ≤ C2n1/2. (3.4)

For P-almost every ω, under Pω the process n−1/2(X0,0
�nt� − ntV ) converges weakly to

the process B(σ 2
a t) on the path space DR[0,∞) as n → ∞.

Quite obviously, X0,0
n and Z0,0

n are interchangeable in the above theorem. Bounds
(3.4) suggest the possibility of a weak limit for the quenched mean on the scale n1/4.
Such results are the main point of this section.

For t ≥ 0, r ∈ R we define scaled, centered quenched mean processes

an(t, r) = n−1/4
{

Eω
(
Z �r

√
n�,0

�nt�
)− �r

√
n� − �nt�V

}
(3.5)

for the forward walks, and

yn(t, r) = n−1/4
{

Eω
(
X �ntb�+�r

√
n�,�nt�

�nt�
)− �r

√
n�
}

(3.6)

for the backward walks. In words, the process an follows forward walks from level 0 to
level �nt� and records centered quenched means. Process yn follows backward walks
from level �nt� down to level 0 and records the centered quenched mean of the point it
hits at level 0. The initial points of the backward walks are translated by the negative of
the mean drift �ntb�. This way the temporal processes an(·, r) and yn(·, r) obtained by
fixing r are meaningful processes.

Random variable yn(t, r) is not exactly centered, for

Eyn(t, r) = n−1/4(�ntb� − �nt�b
)
. (3.7)

Of course this makes no difference to the limit.
Next we describe the Gaussian limiting processes. Recall the constant κ defined

in (2.14) and the function �q defined in (2.15). Let {a(t, r) : (t, r) ∈ R+ × R} and
{y(t, r) : (t, r) ∈ R+ × R} be the mean zero Gaussian processes with covariances

Ea(s, q)a(t, r) = �q
(
(s ∧ t, q), (s ∧ t, r)

)

and

Ey(s, q)y(t, r) = �q
(
(s, q), (t, r)

)

for s, t ≥ 0 and q, r ∈ R. When one argument is fixed, the random function r �→ y(t, r)

is denoted by y(t, ·) and t �→ y(t, r) by y(·, r). From the covariances follows that at a
fixed time level t the spatial processes a(t, ·) and y(t, ·) are equal in distribution.

We record basic properties of these processes.
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Lemma 3.1. The process {y(t, r)} has a version with continuous paths as functions of
(t, r). Furthermore, it has the following Markovian structure in time. Given 0 = t0 <

t1 < · · · < tn, let {ỹ(ti − ti−1, ·) : 1 ≤ i ≤ n} be independent random functions
such that ỹ(ti − ti−1, ·) has the distribution of y(ti − ti−1, ·) for i = 1, . . . , n. Define
y∗(t1, r) = ỹ(t1, r) for r ∈ R, and then inductively for i = 2, . . . , n and r ∈ R,

y∗(ti , r) =
∫

R

ϕσ 2
a (ti −ti−1)

(u)y∗(ti−1, r + u) du + ỹ(ti − ti−1, r). (3.8)

Then the joint distribution of the random functions {y∗(ti , ·) : 1 ≤ i ≤ n} is the same
as that of {y(ti , ·) : 1 ≤ i ≤ n} from the original process.

Sketch of proof. Consider (s, q) and (t, r) varying in a compact set. From the covariance
comes the estimate

E
[
(y(s, q) − y(t, r))2] ≤ C

(|s − t |1/2 + |q − r |) (3.9)

from which, since the integrand is Gaussian,

E
[
(y(s, q) − y(t, r))10] ≤ C

(|s − t |1/2 + |q − r |)5 ≤ C ‖(s, q) − (t, r)‖5/2 .

(3.10)

Kolmogorov’s criterion implies the existence of a continuous version.
For the second statement use (3.8) to express a linear combination

∑n
i=1 θi y∗(ti , ri )

in the form

n∑

i=1

θi y∗(ti , ri ) =
n∑

i=1

∫

R

ỹ(ti − ti−1, x) λi (dx),

where the signed measures λi are linear combinations of Gaussian distributions. Use
this representation to compute the variance of the linear combination on the left-hand
side (it is mean zero Gaussian). Observe that this variance equals

∑

i, j

θiθ j�q((ti , ri ), (t j , r j )).

��
Lemma 3.2. The process {a(t, r)} has a version with continuous paths as functions of
(t, r). Furthermore, it has independent increments in time. A more precise statement
follows. Given 0 = t0 < t1 < · · · < tn, let {ã(ti − ti−1, ·) : 1 ≤ i ≤ n} be indepen-
dent random functions such that ã(ti − ti−1, ·) has the distribution of a(ti − ti−1, ·) for
i = 1, . . . , n. Define a∗(t1, r) = ã(t1, r) for r ∈ R, and then inductively for i = 2, . . . , n
and r ∈ R,

a∗(ti , r) = a∗(ti−1, r) +
∫

R

ϕσ 2
a ti−1

(u)ã(ti − ti−1, r + u) du. (3.11)

Then the joint distribution of the random functions {a∗(ti , ·) : 1 ≤ i ≤ n} is the same as
that of {a(ti , ·) : 1 ≤ i ≤ n} from the original process.

The proof of the lemma above is similar to the previous one so we omit it.
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Remark 3.1. Processes y and a have representations in terms of stochastic integrals.
As in Remark 2.1 let W be a two-parameter Brownian motion on R+ × R. In more

technical terms, W is the orthogonal Gaussian martingale measure on R+ × R with
covariance EW ([0, s] × A)W ([0, t] × B) = (s ∧ t) Leb(A ∩ B) for s, t ∈ R+ and
bounded Borel sets A, B ⊆ R. Then

y(t, r) = σa
√

κ

∫∫

[0,t]×R

ϕσ 2
a (t−s)(r − z) dW (s, z) (3.12)

while

a(t, r) = σa
√

κ

∫∫

[0,t]×R

ϕσ 2
a s(r − z) dW (s, z). (3.13)

By the equations above we mean equality in distribution of processes. They can be
verified by a comparison of covariances, as the integrals on the right are also Gauss-
ian processes. Formula (3.12) implies that process {y(t, r)} is a weak solution of the
stochastic heat equation

yt = 1
2σ 2

a yrr + σa
√

κ Ẇ , y(0, r) ≡ 0, (3.14)

where Ẇ is white noise. (See [34].) These observations are not used elsewhere in the
paper.

Next we record the limits for the quenched mean processes. The four theorems that
follow require assumption (2.2) of stochastic noise and the assumption that the annealed
probabilities p(0, j) = Euω

0 (0, j) have span 1. This next theorem is the one needed for
Theorem 2.1 for RAP.

Theorem 3.2. The finite dimensional distributions of processes yn(t, r) converge to
those of y(t, r) as n → ∞. More precisely, for any finite set of points {(t j , r j ) : 1 ≤
j ≤ k} in R+ × R, the vector

(
yn(t j , r j ) : 1 ≤ j ≤ k

)
converges weakly in R

k to the
vector

(
y(t j , r j ) : 1 ≤ j ≤ k

)
.

Observe that property (3.8) is easy to understand from the limit. It reflects the Mar-
kovian property

Eω(X x,τ
τ ) =

∑

y

Pω(X x,τ
τ−s = y)Eω(X y,s

s ) for s < τ ,

and the “homogenization” of the coefficients which converge to Gaussian probabilities
by the quenched central limit theorem.

Let us restrict the backward quenched mean process to a single characteristic to
observe the outcome. This is the source of the first term in the temporal correlations
(2.19) for RAP. The next statement needs no proof, for it is just a particular case of the
limit in Theorem 3.2.

Corollary 3.3. Fix r ∈ R. As n → ∞, the finite dimensional distributions of the process
{yn(t, r) : t ≥ 0} converge to those of the mean zero Gaussian process {y(t) : t ≥ 0}
with covariance

Ey(s)y(t) = κσa√
2π

(√
t + s − √

t − s
)

(s < t).

Then the same for the forward processes.



Random Average Process 515

Theorem 3.4. The finite dimensional distributions of processes an converge to those of
a as n → ∞. More precisely, for any finite set of points {(t j , r j ) : 1 ≤ j ≤ k} in
R+ × R, the vector

(
an(t j , r j ) : 1 ≤ j ≤ k

)
converges weakly in R

k to the vector(
a(t j , r j ) : 1 ≤ j ≤ k

)
.

When we specialize to a temporal process we also verify path-level tightness and
hence get weak convergence of the entire process. When r = q in (2.16) we get

�q
(
(s ∧ t, r), (s ∧ t, r)

) = ca
√

s ∧ t

with ca = σ 2
D/(β

√
πσ 2

a ). Since s ∧ t is the covariance of standard Brownian motion
B(·), we get the following limit.

Corollary 3.5. Fix r ∈ R. As n → ∞, the process {an(t, r) : t ≥ 0} converges weakly
to {B(ca

√
t ) : t ≥ 0} on the path space DR[0,∞).

4. Random Walk Preliminaries

In this section we collect some auxiliary results for random walks. The basic assump-
tions, (2.2) and span 1 for the p(0, j) = Eu0(0, j) walk, are in force throughout the
remainder of the paper.

Recall the drift in the e1 direction at the origin defined by

D(ω) =
∑

x∈Z

x uω
0 (0, x),

with mean V = −b = E(D). Define the centered drift by

g(ω) = D(ω) − V = Eω(X0,0
1 − V ).

The variance is σ 2
D = E[g2]. The variance of the i.i.d. annealed walk in the e1 direction

is

σ 2
a =

∑

x∈Z

(x − V )2
Euω

0 (0, x).

These variances are connected by

σ 2
a = σ 2

D + E
[
(X0,0

1 − D)2
]
.

Let Xn and X̃n be two independent walks in a common environment ω, and Yn =
Xn − X̃n . In the annealed sense Yn is a Markov chain on Z with transition probabilities

q(0, y) =
∑

z∈Z

E[u0(0, z)u0(0, z + y)] (y ∈ Z),

q(x, y) =
∑

z∈Z

p(0, z)p(0, z + y − x) (x �= 0, y ∈ Z).
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Yn can be thought of as a symmetric random walk on Z whose transition has been
perturbed at the origin. The corresponding homogeneous, unperturbed transition prob-
abilities are

q̄(x, y) = q̄(0, y − x) =
∑

z∈Z

p(0, z)p(0, z + y − x) (x, y ∈ Z).

The q̄-walk has variance 2σ 2
a and span 1 as can be deduced from the definition and the

hypothesis that the p-walk has span 1. Since the q̄-walk is symmetric, its range must be
a subgroup of Z. Then span 1 implies that it is irreducible. The q̄-walk is recurrent by
the Chung-Fuchs theorem. Elementary arguments extend irreducibility and recurrence
from q̄ to the q-chain because away from the origin the two walks are the same. Note
that assumption (2.2) is required here because the q-walk is absorbed at the origin iff
(2.2) fails.

Note that the functions defined in (2.7) are the characteristic functions of these tran-
sitions:

λ(t) =
∑

x

q(0, x)eitx and λ̄(t) =
∑

x

q̄(0, x)eitx .

Multistep transitions are denoted by qk(x, y) and q̄k(x, y), defined as usual by

q̄0(x, y) = 1{x=y}, q̄1(x, y) = q(x, y),

q̄k(x, y) =
∑

x1,...,xk−1∈Z

q̄(x, x1)q̄(x1, x2) · · · q̄(xk−1, y) (k ≥ 2).

Green functions for the q̄- and q-walks are

Ḡn(x, y) =
n∑

k=0

q̄k(x, y) and Gn(x, y) =
n∑

k=0

qk(x, y).

Ḡn is symmetric but Gn not necessarily.
The potential kernel ā of the q̄-walk is defined by

ā(x) = lim
n→∞

{
Ḡn(0, 0) − Ḡn(x, 0)

}
. (4.1)

It satisfies ā(0) = 0, the equations

ā(x) =
∑

y∈Z

q̄(x, y)ā(y) for x �= 0, and
∑

y∈Z

q̄(0, y)ā(y) = 1, (4.2)

and the limit

lim
x→±∞

ā(x)

|x | = 1

2σ 2
a

. (4.3)

These facts can be found in Sects. 28 and 29 of Spitzer’s monograph [31].

Example 4.1. If for some k ∈ Z, p(0, k) + p(0, k + 1) = 1, so that q̄(0, x) = 0 for
x /∈ {−1, 0, 1}, then ā(x) = |x | /(2σ 2

a ).
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Define the constant

β =
∑

x∈Z

q(0, x)ā(x). (4.4)

To see that this definition agrees with (2.8), observe that the above equality leads to

β = lim
n→∞

{
n∑

k=0

q̄k(0, 0) −
n∑

k=0

∑

x

q(0, x)q̄k(x, 0)

}

.

Think of the last sum over x as P[Y1 + Ȳk = 0], where Ȳk is the q̄-walk, and Y1 and Ȳk
are independent. Since Y1 + Ȳk has characteristic function λ(t)λ̄k(t), we get

β = lim
n→∞

1

2π

∫ π

−π

(1 − λ(t))
n∑

k=0

λ̄k(t) dt = 1

2π

∫ π

−π

1 − λ(t)

1 − λ̄(t)
dt.

Ferrari and Fontes [14] begin their development by showing that

β = lim
s↗1

ζ̄ (s)

ζ(s)
,

where ζ and ζ̄ are the generating functions

ζ(s) =
∞∑

k=0

qk(0, 0)sk and ζ̄ (s) =
∞∑

k=0

q̄k(0, 0)sk .

Our development bypasses the generating functions. We begin with the asymptotics
of the Green functions. This is the key to all our results, both for RWRE and RAP. As
already pointed out, without assumption (2.2) the result would be completely wrong
because the q-walk absorbs at 0, while a span h > 1 would appear in this limit as an
extra factor.

Lemma 4.1. Let x ∈ R, and let xn be any sequence of integers such that xn − n1/2x
stays bounded. Then

lim
n→∞ n−1/2Gn

(
xn, 0

) = 1

2βσ 2
a

∫ 2σ 2
a

0

1√
2πv

exp
{
− x2

2v

}
dv. (4.5)

Proof. For the homogeneous q̄-walk the local limit theorem [11, Sect. 2.5] implies that

lim
n→∞ n−1/2Ḡn(0, xn) = 1

2σ 2
a

∫ 2σ 2
a

0

1√
2πv

exp
{
− x2

2v

}
dv (4.6)

and by symmetry the same limit is true for n−1/2Ḡn(xn, 0). In particular,

lim
n→∞ n−1/2Ḡn(0, 0) = 1

√
πσ 2

a

. (4.7)

Next we show

lim
n→∞ n−1/2Gn(0, 0) = 1

β
√

πσ 2
a

. (4.8)
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Using (4.2), ā(0) = 0, and q̄(x, y) = q(x, y) for x �= 0 we develop
∑

x∈Z

qm(0, x)ā(x) =
∑

x �=0

qm(0, x)ā(x) =
∑

x �=0,y∈Z

qm(0, x)q̄(x, y)ā(y)

=
∑

x �=0,y∈Z

qm(0, x)q(x, y)ā(y)

=
∑

y∈Z

qm+1(0, y)ā(y) − qm(0, 0)
∑

y∈Z

q(0, y)ā(y).

Identify β in the last sum above and sum over m = 0, 1, . . . , n − 1 to get
(
1 + q(0, 0) + · · · + qn−1(0, 0)

)
β =

∑

x∈Z

qn(0, x)ā(x).

Write this in the form

n−1/2Gn−1(0, 0)β = n−1/2 E0
[
ā(Yn)

]
.

Recall that Yn = Xn − X̃n , where Xn and X̃n are two independent walks in the same
environment. Thus by Theorem 3.1 n−1/2Yn converges weakly to a centered Gaussian
with variance 2σ 2

a . Under the annealed measure the walks Xn and X̃n are ordinary i.i.d.
walks with bounded steps, hence there is enough uniform integrability to conclude that
n−1/2 E0 |Yn| → 2

√
σ 2

a /π. By (4.3) and straightforward estimation,

n−1/2 E0
[
ā(Yn)

]→ 1
√

σ 2
a π

.

This proves (4.8).
From (4.7)–(4.8) we take the conclusion

lim
n→∞

1√
n

∣
∣βGn(0, 0) − Ḡn(0, 0)

∣
∣ = 0. (4.9)

Let f 0(z, 0) = 1{z=0} and for k ≥ 1 let

f k(z, 0) = 1{z �=0}
∑

z1 �=0,...,zk−1 �=0

q(z, z1)q(z1, z2) · · · q(zk−1, 0).

This is the probability that the first visit to the origin occurs at time k, including a possible
first visit at time 0. Note that this quantity is the same for the q and q̄ walks. Now bound

sup
z∈Z

∣
∣
∣

β√
n

Gn(z, 0) − 1√
n

Ḡn(z, 0)

∣
∣
∣

≤ sup
z∈Z

1√
n

n∑

k=0

f k(z, 0)
∣
∣βGn−k(0, 0) − Ḡn−k(0, 0)

∣
∣.

To see that the last line vanishes as n → ∞, by (4.9) choose n0 so that

|βGn−k(0, 0) − Ḡn−k(0, 0)| ≤ ε
√

n − k

for k ≤ n − n0, while trivially

|βGn−k(0, 0) − Ḡn−k(0, 0)| ≤ Cn0

for n − n0 < k ≤ n. The conclusion (4.5) now follows from this and (4.6). ��
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Lemma 4.2. sup
n≥1

sup
x∈Z

∣
∣Gn(x, 0) − Gn(x + 1, 0)

∣
∣ < ∞.

Proof. Let Ty = inf{n ≥ 1 : Yn = y} denote the first hitting time of the point y,

Gn(x, 0) = Ex

[ n∑

k=0

1{Yk = 0}
]

= Ex

[ Ty∧n∑

k=0

1{Yk = 0}
]

+ Ex

[ n∑

k=Ty∧n+1

1{Yk = 0}
]

≤ Ex

[ Ty∑

k=0

1{Yk = 0}
]

+ Gn(y, 0).

In an irreducible Markov chain the expectation Ex
[ ∑Ty

k=0 1{Yk = 0}] is finite for
any given states x, y [8, Theorem 3 in Sect. I.9]. Since this is independent of n, the
inequalities above show that

sup
n

sup
−a≤x≤a

|Gn(x, 0) − Gn(x + 1, 0)| < ∞ (4.10)

for any fixed a.
Fix a positive integer a larger than the range of the jump kernels q(x, y) and q̄(x, y).

Consider x > a. Let σ = inf{n ≥ 1 : Yn ≤ a − 1} and τ = inf{n ≥ 1 : Yn ≤ a}. Since
the q-walks starting at x and x + 1 obey the translation-invariant kernel q̄ until they hit
the origin,

Px [Yσ = y, σ = n] = Px+1[Yτ = y + 1, τ = n].
(Any path that starts at x and enters [0, a − 1] at y can be translated by 1 to a path that
starts at x + 1 and enters [0, a] at y + 1, without changing its probability.) Consequently

Gn(x, 0) − Gn(x + 1, 0)

=
n∑

k=1

a−1∑

y=0

Px [Yσ = y, σ = k](Gn−k(y, 0) − Gn−k(y + 1, 0)
)
.

Together with (4.10) this shows that the quantity in the statement of the lemma is uni-
formly bounded over x ≥ 0. The same argument works for x ≤ 0. ��

One can also derive the limit

lim
n→∞

{
Gn(0, 0) − Gn(x, 0)

} = β−1ā(x)

but we have no need for this.
Lastly, a moderate deviation bound for the space-time RWRE with bounded steps.

Let Xi,τ
s be the spatial backward walk defined in Sect. 3 with the bound (3.2) on the

steps. Let X̃ i, τ
s = Xi, τ

s − i − V s be the centered walk.

Lemma 4.3. For m, n ∈ N, let (i(m, n), τ (m, n)) ∈ Z
2, v(n) ≥ 1, and let s(n) → ∞

be a sequence of positive integers. Let α, γ and c be positive reals. Assume

∞∑

n=1

v(n)s(n)α exp{−cs(n)γ } < ∞.
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Then for P-almost every ω,

lim
n→∞ max

1≤m≤v(n)
s(n)α Pω

{
max

1≤k≤s(n)
X̃ i(m,n), τ (m,n)

k ≥ cs(n)
1
2 +γ
}

= 0. (4.11)

Proof. Fix ε > 0. By Markov’s inequality and translation-invariance,

P

[

ω : max
1≤m≤v(n)

s(n)α Pω
{

max
1≤k≤s(n)

X̃ i(m,n), τ (m,n)
k ≥ cs(n)

1
2 +γ
}

≥ ε

]

≤ ε−1s(n)αv(n)P

{

max
1≤k≤s(n)

X̃0,0
k ≥ cs(n)

1
2 +γ

}

.

Under the annealed measure P , X̃0,0
k is an ordinary homogeneous mean zero ran-

dom walk with bounded steps. It has a finite moment generating function φ(λ) =
log E(exp{λX̃0,0

1 }) that satisfies φ(λ) = O(λ2) for small λ. Apply Doob’s inequal-

ity to the martingale Mk = exp(λX̃0,0
k − kφ(λ)), note that φ(λ) ≥ 0, and choose a

constant a1 such that φ(λ) ≤ a1λ
2 for small λ. This gives

P

{

max
1≤k≤s(n)

X̃0,0
k ≥ cs(n)

1
2 +γ

}

≤ P

{

max
1≤k≤s(n)

Mk ≥ exp
(
cλs(n)

1
2 +γ − s(n)φ(λ)

)
}

≤ exp
(−cλs(n)

1
2 +γ + a1s(n)λ2) = ea1 · exp{−cs(n)γ },

where we took λ = s(n)− 1
2 .

The conclusion of the lemma now follows from the hypothesis and Borel-Cantelli. ��

5. Proofs for Backward Walks in a Random Environment

Here are two further notational conventions used in the proofs. The environment con-
figuration at a fixed time level is denoted by ω̄n = {ωx,n : x ∈ Z}. Translations on �

are defined by (Tx,nω)y,k = ωx+y,n+k .

5.1. Proof of Theorem 3.2. This proof proceeds in two stages. First in Lemma 5.1 con-
vergence is proved for finite-dimensional distributions at a fixed t-level. In the second
stage the convergence is extended to multiple t-levels via the natural Markovian prop-

erty that we express in terms of yn next. Abbreviate Xn,t,r
k = X �ntb�+�r

√
n�,�nt�

k . Then
for 0 ≤ s < t ,

yn(t, r) = n−1/4(Eω(Xn,t,r
�nt� ) − �r

√
n�)

=
∑

z∈Z

Pω
{

Xn,t,r
�nt�−�ns� = �nsb� + z

}
n−1/4(Eω(X �nsb�+z,�ns�

�ns� ) − z
)

+
∑

z∈Z

Pω
{

Xn,t,r
�nt�−�ns� = �nsb� + z

}
n−1/4(z − �r

√
n�)

=
∑

z∈Z

Pω
{

Xn,t,r
�nt�−�ns� = �nsb� + z

}
n−1/4(Eω(X �nsb�+z,�ns�

�ns� ) − z
)

+n−1/4{Eω
(
Xn,t,r

�nt�−�ns�
)− �nsb� − �r

√
n�}



Random Average Process 521

=
∑

z∈Z

Pω
{

Xn,t,r
�nt�−�ns� = �nsb� + z

}
n−1/4(Eω(X �nsb�+z,�ns�

�ns� ) − z
)

(5.1)

+yn(un, r) ◦ T�ntb�−�nbun�,�nt�−�nun� + n−1/4(�ntb� − �nsb� − �nbun�),
(5.2)

where we defined un = n−1(�nt� − �ns�) so that �nun� = �nt� − �ns�. Tx,m denotes
the translation of the random environment that makes (x, m) the new space-time origin,
in other words (Tx,mω)y,n = ωx+y,m+n .

The key to making use of the decomposition of yn(t, r) given on lines (5.1) and (5.2)
is that the quenched expectations

Eω
(

X �nsb�+z,�ns�
�ns�

)
and yn(un, r) ◦ T�ntb�−�nbun�,�nt�−�nun�

are independent because they are functions of environments ω̄m on disjoint sets of lev-
els m, while the coefficients Pω

{
Xn,t,r

�nt�−�ns� = �nsb� + z
}

on line (5.1) converge (in
probability) to Gaussian probabilities by the quenched CLT as n → ∞. In the limit this
decomposition becomes (3.8).

Because of the little technicality of matching �nt� − �ns� with �n(t − s)� we state
the next lemma for a sequence tn → t instead of a fixed t .

Lemma 5.1. Fix t > 0, and finitely many reals r1 < r2 < . . . < rN . Let tn be a
sequence of positive reals such that tn → t . Then as n → ∞ the R

N -valued vec-
tor (yn(tn, r1), . . . , yn(tn, rN )) converges weakly to a mean zero Gaussian vector with
covariance matrix {�q((t, ri ), (t, r j )) : 1 ≤ i, j ≤ N } with �q as defined in (2.15).

The proof of Lemma 5.1 is technical (martingale CLT and random walk estimates),
so we postpone it and proceed with the main development.

Proof of Theorem 3.2. The argument is inductive on the number M of time points in the
finite-dimensional distribution. The induction assumption is that

[yn(ti , r j ) : 1 ≤ i ≤ M, 1 ≤ j ≤ N ] → [y(ti , r j ) : 1 ≤ i ≤ M, 1 ≤ j ≤ N ]
weakly on R

M N for any M time points 0 ≤ t1 < t2 < · · · < tM and (5.3)

for any reals r1, . . . , rN for any finite N .

The case M = 1 comes from Lemma 5.1. To handle the case M + 1, let 0 ≤ t1 <

t2 < · · · < tM+1, and fix an arbitrary (M + 1)N -vector [θi, j ]. By the Cramér-Wold
device, it suffices to show the weak convergence of the linear combination

∑

1≤i≤M+1
1≤ j≤N

θi, j yn(ti , r j ) =
∑

1≤i≤M
1≤ j≤N

θi, j yn(ti , r j ) +
∑

1≤ j≤N

θM+1, j yn(tM+1, r j ), (5.4)

where we separated out the (M + 1)-term to be manipulated. The argument will use
(5.1)–(5.2) to replace the values at tM+1 with values at tM plus terms independent of the
rest.

For Borel sets B ⊆ R define the probability measure

pω
n, j (B) = Pω

{
X

�ntM+1b�+�r j
√

n�,�ntM+1�
�ntM+1�−�ntM� − �ntM b� ∈ B

}
.
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Apply the decomposition (5.1)–(5.2), with sn = n−1(�ntM+1� − �ntM�) and

ỹn(sn, r j ) = yn(sn, r j ) ◦ T�ntM+1b�−�nsnb�,�ntM+1�−�nsn�
to get

yn(tM+1, r j ) =
∑

z∈Z

pω
n, j (z)n

−1/4{Eω
(

X �ntM b�+z,�ntM �
�ntM�

)
− z
}

+ỹn(sn, r j ) + O(n−1/4). (5.5)

The O(n−1/4) term above is n−1/4
(�ntM+1b�−�ntM b�−�nsnb�), a deterministic quan-

tity. Next we reorganize the sum in (5.5) to take advantage of Lemma 5.1. Given a > 0,
define a partition of [−a, a] by

−a = u0 < u1 < · · · < uL = a

with mesh � = max{u�+1 − u�}. For integers z such that −a
√

n < z ≤ a
√

n, let u(z)
denote the value u� such that u�

√
n < z ≤ u�+1

√
n. For 1 ≤ j ≤ N define an error term

by

Rn, j (a) = n−1/4
�a

√
n�∑

z=�−a
√

n�+1

pω
n, j (z)

({
Eω(X �ntM b�+z,�ntM �

�ntM � ) − z
}

− {Eω(X �ntM b�+�u(z)
√

n�,�ntM�
�ntM � ) − �u(z)

√
n�}

)
(5.6)

+n−1/4
∑

z≤−a
√

n , z>a
√

n

pω
n, j (z)

{
Eω(X �ntM b�+z,�ntM �

�ntM � ) − z
}
. (5.7)

With this we can rewrite (5.5) as

yn(tM+1, r j ) =
L−1∑

�=0

pω
n, j (u�n1/2, u�+1n1/2 ]yn(tM , u�) + ỹn(sn, r j ) (5.8)

+Rn, j (a) + O(n−1/4).

Let γ denote a normal distribution on R with mean zero and variance σ 2
a (tM+1 − tM ).

According to the quenched CLT Theorem 3.1,

pω
n, j (u�n1/2, u�+1n1/2 ] → γ (u� − r j , u�+1 − r j ] in P-probability as n → ∞. (5.9)

In view of (5.4) and (5.8), we can write
∑

1≤i≤M+1
1≤ j≤N

θi, j yn(ti , r j ) =
∑

1≤i≤M
1≤k≤K

ρω
n,i,k yn(ti , vk) +

∑

1≤ j≤N

θM+1, j ỹn(sn, r j )

+Rn(a) + O(n−1/4). (5.10)

Above the spatial points {vk} are a relabeling of {r j , u�}, the ω-dependent coefficients
ρω

n,i,k contain constants θi, j , probabilities pω
n, j (u�n1/2, u�+1n1/2 ], and zeroes. The con-

stant limits ρω
n,i,k → ρi,k exist in P-probability as n → ∞. The error in (5.10) is

Rn(a) =∑ j θM+1, j Rn, j (a).
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The variables ỹn(sn, r j ) are functions of the environments {ω̄m : [ntM+1] ≥ m >

[ntM ]} and hence independent of yn(ti , vk) for 1 ≤ i ≤ M which are functions of
{ω̄m : [ntM ] ≥ m > 0}.

On a probability space on which the limit process {y(t, r)} has been defined, let
ỹ(tM+1 − tM , ·) be a random function distributed like y(tM+1 − tM , ·) but independent
of {y(t, r)}.

Let f be a bounded Lipschitz continuous function on R, with Lipschitz constant C f .
The goal is to show that the top line (5.11) below vanishes as n → ∞. Add and subtract
terms to decompose (5.11) into three differences:

E f

⎛

⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j yn(ti , r j )

⎞

⎟
⎟
⎠− E f

⎛

⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j y(ti , r j )

⎞

⎟
⎟
⎠ (5.11)

=

⎧
⎪⎪⎨

⎪⎪⎩
E f

⎛

⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j yn(ti , r j )

⎞

⎟
⎟
⎠

−E f

⎛

⎜
⎜
⎝

∑

1≤i≤M
1≤k≤K

ρω
n,i,k yn(ti , vk) +

∑

1≤ j≤N

θM+1, j ỹn(sn, r j )

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
(5.12)

+

⎧
⎪⎪⎨

⎪⎪⎩
E f

⎛

⎜
⎜
⎝

∑

1≤i≤M
1≤k≤K

ρω
n,i,k yn(ti , vk) +

∑

1≤ j≤N

θM+1, j ỹn(sn, r j )

⎞

⎟
⎟
⎠

−E f

⎛

⎜
⎜
⎝

∑

1≤i≤M
1≤k≤K

ρi,k y(ti , vk) +
∑

1≤ j≤N

θM+1, j ỹ(tM+1 − tM , r j )

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
(5.13)

+

⎧
⎪⎪⎨

⎪⎪⎩
E f

⎛

⎜
⎜
⎝

∑

1≤i≤M
1≤k≤K

ρi,k y(ti , vk) +
∑

1≤ j≤N

θM+1, j ỹ(tM+1 − tM , r j )

⎞

⎟
⎟
⎠

−E f

⎛

⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j y(ti , r j )

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (5.14)

The remainder of the proof consists in treating the three differences of expectations
(5.12)–(5.14).

By the Lipschitz assumption and (5.10), the difference (5.12) is bounded by

C f E|Rn(a)| + O(n−1/4).

We need to bound Rn(a). Recall that γ is an N (0, σ 2
a (tM+1 − tM ))-distribution.
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Lemma 5.2. There exist constants C1 and a0 such that, if a > a0, then for any partition
{u�} of [−a, a] with mesh �, and for any 1 ≤ j ≤ N,

lim sup
n→∞

E|Rn, j (a)| ≤ C1
(√

� + γ (−∞,−a/2) + γ (a/2,∞)
)
.

We postpone the proof of Lemma 5.2. From this lemma, given ε > 0, we can choose
first a large enough and then � small enough so that

lim sup
n→∞

[ difference (5.12) ] ≤ ε/2.

Difference (5.13) vanishes as n → ∞, due to the induction assumption (5.3), the
limits ρω

n,i,k → ρi,k in probability, and the next lemma. Notice that we are not trying to
invoke the induction assumption (5.3) for M + 1 time points {t1, . . . , tM , sn}. Instead,
the induction assumption is applied to the first sum inside f in (5.13). To the second
sum apply Lemma 5.1, noting that sn → tM+1 − tM . The two sums are independent of
each other, as already observed after (5.10), so they converge jointly. This point is made
precise in the next lemma.

Lemma 5.3. Fix a positive integer k. For each n, let Vn = (V 1
n , . . . , V k

n ), Xn =
(X1

n, . . . , Xk
n), and ζn be random variables on a common probability space. Assume

that Xn and ζn are independent of each other for each n. Let v be a constant k-vector,
X another random k-vector, and ζ a random variable. Assume the weak limits Vn → v,
Xn → X, and ζn → ζ hold marginally. Then we have the weak limit

Vn · Xn + ζn → v · X + ζ,

where the X and ζ on the right are independent.

To prove this lemma, write

Vn · Xn + ζn = (Vn − v) · Xn + v · Xn + ζn

and note that since Vn → v in probability, tightness of {Xn} implies that (Vn−v)·Xn → 0
in probability. As mentioned, it applies to show that

lim
n→∞ [ difference (5.13) ] = 0.

It remains to examine the difference (5.14). From a consideration of how the coeffi-
cients ρω

n,i,k in (5.10) arise and from the limit (5.9),

∑

1≤i≤M
1≤k≤K

ρi,k y(ti , vk) +
∑

1≤ j≤N

θM+1, j ỹ(tM+1 − tM , r j ) =
∑

1≤i≤M
1≤ j≤N

θi, j y(ti , r j )

+
∑

1≤ j≤N

θM+1, j

(
L−1∑

�=0

γ (u� − r j , u�+1 − r j ]y(tM , u�) + ỹ(tM+1 − tM , r j )

)

.
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The first sum after the equality sign matches all but the (i = M + 1)-terms in the last
sum in (5.14). By virtue of the Markov property in (3.8) we can represent the variables
y(tM+1, r j ) in the last sum in (5.14) by

y(tM+1, r j ) =
∫

R

ϕσ 2
a (tM+1−tM )(u − r j )y(tM , u) du + ỹ(tM+1 − tM , r j ).

Then by the Lipschitz property of f it suffices to show that, for each 1 ≤ j ≤ N , the
expectation

E

∣
∣
∣
∣
∣

∫

R

ϕσ 2
a (tM+1−tM )(u − r j )y(tM , u) du −

L−1∑

�=0

γ (u� − r j , u�+1 − r j ]y(tM , u�)

∣
∣
∣
∣
∣

can be made small by choice of a > 0 and the partition {u�}. This follows from the
moment bounds (3.9) on the increments of the y-process and we omit the details. We
have shown that if a is large enough and then � small enough,

lim sup
n→∞

[ difference (5.14) ] ≤ ε/2.

To summarize, given bounded Lipschitz f and ε > 0, by choosing a > 0 large
enough and the partition {u�} of [−a, a] fine enough,

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

E f

⎛

⎜
⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j yn(ti , r j )

⎞

⎟
⎟
⎟
⎠

− E f

⎛

⎜
⎜
⎜
⎝

∑

1≤i≤M+1
1≤ j≤N

θi, j y(ti , r j )

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε.

This completes the proof of the induction step and thereby the proof of Theorem 3.2. ��

It remains to verify the lemmas that were used along the way.

Proof of Lemma 5.2. We begin with a calculation. Here it is convenient to use the space-
time walk X̄ x,m

k = (X x,m
k , m − k). First observe that

Eω(X x,m
n ) − x − nV =

n−1∑

k=0

Eω
[
X x,m

k+1 − X x,m
k − V

]

=
n−1∑

k=0

Eω
[

E
T{X̄ x,m

k }ω(X0,0
1 − V )

]

=
n−1∑

k=0

Eωg(TX̄ x,m
k

ω). (5.15)
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From this, for x, y ∈ Z,

E

[({Eω(X x,n
n ) − x} − {Eω(X y,n

n ) − y})2
]

= E

n−1∑

k=0

(
Eω
[
g(TX̄ x,n

k
ω) − g(TX̄ y,n

k
ω)
])2

+ 2
∑

0≤k<�<n

EEω
[
g(TX̄ x,n

k
ω) − g(TX̄ y,n

k
ω)
]
Eω
[
g(TX̄ x,n

�
ω) − g(TX̄ y,n

�
ω)
]

(the cross terms for k < � vanish)

= E

n−1∑

k=0

⎛

⎝
∑

z,w∈Z2

Pω{X̄ x,n
k = z}Pω{X̄ y,n

k = w}[g(Tzω) − g(Twω)
]
⎞

⎠

2

= E

n−1∑

k=0

∑

z,w,u,v∈Z2

Pω{X̄ x,n
k = z}Pω{X̄ y,n

k = w}Pω{X̄ x,n
k = u}Pω{X̄ y,n

k = v}

×
(

g(Tzω)g(Tuω) − g(Twω)g(Tuω) − g(Tzω)g(Tvω) + g(Twω)g(Tvω)
)

(
by independence Eg(Tzω)g(Tuω) = σ 2

D1{z=u}
)

= σ 2
D

n−1∑

k=0

(
P{X x,n

k = X̃ x,n
k } − 2P{X x,n

k = X̃ y,n
k } + P{X y,n

k = X̃ y,n
k }
)

= 2σ 2
D

n−1∑

k=0

(
P0{Yk = 0} − Px−y{Yk = 0}

)

= 2σ 2
D

(
Gn−1(0, 0) − Gn−1(x − y, 0)

)
.

On the last three lines above, as elsewhere in the paper, we used these conventions: Xk
and X̃k denote walks that are independent in a common environment ω, Yk = Xk − X̃k
is the difference walk, and Gn(x, y) the Green function of Yk . By Lemma 4.2 we get
the inequality

E

[({Eω(X x,n
n ) − x} − {Eω(X y,n

n ) − y})2
]

≤ C |x − y| (5.16)

valid for all n and all x, y ∈ Z.
Turning to Rn, j (a) defined in (5.6)–(5.7), and utilizing independence,

E|Rn, j (a)| ≤ n−1/4
�a

√
n�∑

z=�−a
√

n�+1

E[pω
n, j (z)]

(
E

[({
Eω
(
X �ntM b�+z,�ntM �

�ntM �
)− z

}

−
{

Eω
(
X �ntM b�+�u(z)

√
n�,�ntM�

�ntM �
)− �u(z)

√
n�
} )2] )1/2

+n−1/4
∑

z≤−a
√

n
z>a

√
n

E[pω
n, j (z)]

(
E
[(

Eω(X �ntM b�+z,�ntM �
�ntM� )

−E(X �ntM b�+z,�ntM �
�ntM � )

)2 ])1/2



Random Average Process 527

+n−1/4
∑

z≤−a
√

n
z>a

√
n

E[pω
n, j (z)] · ∣∣ E(X �ntM b�+z,�ntM�

�ntM � ) − z
∣
∣

≤ Cn−1/4 max
−a

√
n<z≤a

√
n
|z − �u(z)

√
n� |1/2

+C P
{ ∣∣X

�ntM+1b�+�r j
√

n�,�ntM+1�
�ntM+1�−�ntM� − �ntM b�∣∣ ≥ a

√
n
}

+ Cn−1/4.

For the last inequality above we used (5.16), bound (3.4) on the variance of the quenched
mean, and then

E
(

X �ntM b�+z,�ntM �
�ntM �

)
− z = �ntM b� + �ntM�V = �ntM b� − �ntM�b = O(1).

By the choice of u(z), and by the central limit theorem if a > 2|r j |, the limit of the bound
on E|Rn, j (a)| as n → ∞ is C(

√
� + γ (−∞,−a/2) + γ (a/2,∞)). This completes the

proof of Lemma 5.2. ��
Proof of Lemma 5.1. We drop the subscript from tn and write simply t . For the main
part of the proof the only relevant property is that ntn = O(n). We point this out after
the preliminaries.

We show convergence of the linear combination
∑N

i=1 θi yn(t, ri ) for an arbitrary but
fixed N -vector θ = (θ1, . . . , θN ). This in turn will come from a martingale central limit

theorem. For this proof abbreviate Xi
k = X �ntb�+�ri

√
n�,�nt�

k . For 1 ≤ k ≤ �nt� define

zn,k = n−1/4
N∑

i=1

θi Eωg(TX̄i
k−1

ω)

so that by (5.15)

�nt�∑

k=1

zn,k =
N∑

i=1

θi yn(t, ri ) + O(n−1/4).

The error is deterministic and comes from the discrepancy (3.7) in the centering. It
vanishes in the limit and so can be ignored.

A probability of the type Pω(Xi
k−1 = y) is a function of the environments

{
ω̄ j : �nt� − k + 2 ≤ j ≤ �nt�}

while g(Ty,sω) is a function of ω̄s . For a fixed n, {zn,k : 1 ≤ k ≤ �nt�} are martingale
differences with respect to the filtration

Un,k = σ
{
ω̄ j : �nt� − k + 1 ≤ j ≤ �nt�} (1 ≤ k ≤ �nt�)

with Un,0 equal to the trivial σ -algebra. The goal is to show that
∑�nt�

k=1 zn,k converges to
a centered Gaussian with variance

∑
1≤i, j≤N θiθ j�q((t, ri ), (t, r j )). By the Lindeberg-

Feller Theorem for martingales, it suffices to check that

�nt�∑

k=1

E
[
z2

n,k

∣
∣Un,k−1

] −→
∑

1≤i, j≤N

θiθ j�q((t, ri ), (t, r j )) (5.17)
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and

�nt�∑

k=1

E
[
z2

n,k1{∣∣zn,k
∣
∣ ≥ ε} ∣∣Un,k−1

] −→ 0 (5.18)

in probability, as n → ∞, for every ε > 0. Condition (5.18) is trivially satisfied because
|zn,k | ≤ Cn−1/4 by the boundedness of g.

The main part of the proof consists of checking (5.17). This argument is a general-
ization of the proof of [14, Theorem 4.1] where it was done for a nearest-neighbor walk.
We follow their reasoning for the first part of the proof. Since σ 2

D = E[g2] and since
conditioning z2

n,k on Un,k−1 entails integrating out the environments ω̄�nt�−k+1, one can
derive

�nt�∑

k=1

E[z2
n,k | Un,k−1] = σ 2

D

∑

1≤i, j≤N

θiθ j n−1/2
�nt�−1∑

k=0

Pω(Xi
k = X̃ j

k ),

where Xi
k and X̃ j

k are two walks independent under the common environment ω, started
at (�ntb� + �ri

√
n�, �nt�) and (�ntb� + �r j

√
n�, �nt�).

By (4.5),

σ 2
Dn−1/2

�nt�−1∑

k=0

P(Xi
k = X̃ j

k ) −→ �q((t, ri ), (t, r j )). (5.19)

This limit holds if instead of a fixed t on the left we have a sequence tn → t . Consequently
we will have proved (5.17) if we show, for each fixed pair (i, j), that

n−1/2
�nt�−1∑

k=0

(
Pω{Xi

k = X̃ j
k } − P{Xi

k = X̃ j
k }
)

−→ 0 (5.20)

in P-probability. For the above statement the behavior of t is immaterial as long as it
stays bounded as n → ∞.

Rewrite the expression in (5.20) as

n−1/2
�nt�−1∑

k=0

(
P{Xi

k = X̃ j
k | Un,k} − P{Xi

k = X̃ j
k | Un,0}

)

= n−1/2
�nt�−1∑

k=0

k−1∑

�=0

(
P{Xi

k = X̃ j
k | Un,�+1} − P{Xi

k = X̃ j
k | Un,�}

)

= n−1/2
�nt�−1∑

�=0

�nt�−1∑

k=�+1

(
P{Xi

k = X̃ j
k | Un,�+1} − P{Xi

k = X̃ j
k | Un,�}

)

≡ n−1/2
�nt�−1∑

�=0

R�,



Random Average Process 529

where the last line defines R�. Check that ER� Rm = 0 for � �= m. Thus it is convenient
to verify our goal (5.20) by checking L2 convergence, in other words by showing

n−1
�nt�−1∑

�=0

E[R2
� ]

= n−1
�nt�−1∑

�=0

E

⎡

⎢
⎣

⎧
⎨

⎩

�nt�−1∑

k=�+1

(
P{Xi

k = X̃ j
k | Un,�+1} − P{Xi

k = X̃ j
k | Un,�}

)
⎫
⎬

⎭

2
⎤

⎥
⎦

(5.21)

−→ 0.

For the moment we work on a single term inside the braces in (5.21), for a fixed pair
k > �. Write Ym = Xi

m − X̃ j
m for the difference walk. By the Markov property of the

walks [recall (2.27)] we can write

P{Xi
k = X̃ j

k | Un,�+1} =
∑

x,x̃,y,ỹ∈Z

Pω{Xi
� = x, X̃ j

� = x̃}

×uω�nt�−�(x, y − x)uω�nt�−�(x̃, ỹ − x̃)P(Yk = 0 | Y�+1 = y − ỹ)

and similarly for the other conditional probability

P{Xi
k = X̃ j

k | Un,�} =
∑

x,x̃,y,ỹ∈Z

Pω{Xi
� = x, X̃ j

� = x̃}

×E[uω�nt�−�(x, y − x)uω�nt�−�(x̃, ỹ − x̃)]P(Yk = 0 | Y�+1 = y − ỹ).

Introduce the transition probability q(x, y) of the Y -walk. Combine the above decom-
positions to express the (k, �) term inside the braces in (5.21) as

P{Xi
k = X̃ j

k | Un,�+1} − P{Xi
k = X̃ j

k | Un,�}
=

∑

x,x̃,y,ỹ∈Z

Pω{Xi
� = x, X̃ j

� = x̃}qk−�−1(y − ỹ, 0)

×(uω�nt�−�(x, y − x)uω�nt�−�(x̃, ỹ − x̃)

−E[uω�nt�−�(x, y − x)uω�nt�−�(x̃, ỹ − x̃)] )

=
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}
∑

z,w: −M≤w≤M
−M≤w−z≤M

qk−�−1(x − x̃ + z, 0)

×
(

uω�nt�−�(x, w)uω�nt�−�(x̃, w − z)

−E[uω�nt�−�(x, w)uω�nt�−�(x̃, w − z)]
)
. (5.22)

The last sum above uses the finite range M of the jump probabilities. Introduce the
quantities

ρω
� (x, x + m) =

∑

y:y≤m

uω�nt�−�(x, y) =
m∑

y=−M

uω�nt�−�(x, y)
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and

ζω
� (x, x̃, z, w) = ρω

� (x, x + w)uω�nt�−�(x̃, w − z)

−E
[
ρω

� (x, x + w)uω�nt�−�(x̃, w − z)
]
.

Fix (x, x̃), consider the sum over z and w on line (5.22), and continue with a “summation
by parts” step:

∑

z,w: −M≤w≤M
−M≤w−z≤M

qk−�−1(x − x̃ + z, 0)
(

uω�nt�−�(x, w)uω�nt�−�(x̃, w − z)

−E[uω�nt�−�(x, w)uω�nt�−�(x̃, w − z)]
)

=
∑

z,w: −M≤w≤M
−M≤w−z≤M

qk−�−1(x − x̃ + z, 0)
(
ζω
� (x, x̃, z, w) − ζω

� (x, x̃, z − 1, w − 1)
)

=
∑

z,w: −M≤w≤M
−M≤w−z≤M

(
qk−�−1(x − x̃ + z, 0) − qk−�−1(x − x̃ + z + 1, 0)

)
ζω
� (x, x̃, z, w)

+
2M∑

z=0

qk−�−1(x − x̃ + z + 1, 0)ζω
� (x, x̃, z, M)

−
−1∑

z=−2M−1

qk−�−1(x − x̃ + z + 1, 0)ζω
� (x, x̃, z,−M − 1).

By definition of the range M , the last sum above vanishes because ζω
� (x, x̃, z,−M−1) =

0. Take this into consideration, substitute the last form above into (5.22) and sum over
k = � + 1, . . . , �nt� − 1. Define the quantity

A�,n(x) =
�nt�−1∑

k=�+1

(
qk−�−1(x, 0) − qk−�−1(x + 1, 0)

)
. (5.23)

Then the expression in braces in (5.21) is represented as

R� =
�nt�−1∑

k=�+1

(
P{Xi

k = X̃ j
k | Un,�+1} − P{Xi

k = X̃ j
k | Un,�}

)

=
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}
∑

z,w: −M≤w≤M
−M≤w−z≤M

A�,n(x − x̃ + z)ζω
� (x, x̃, z, w) (5.24)

+
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}
2M∑

z=0

�nt�−1∑

k=�+1

qk−�−1(x − x̃ + z + 1, 0)ζω
� (x, x̃, z, M)

(5.25)

≡ R�,1 + R�,2,

where R�,1 and R�,2 denote the sums on lines (5.24) and (5.25).
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Recall from (5.21) that our goal was to show that n−1∑�nt�−1
�=0 ER2

� → 0 as n → ∞.
We show this separately for R�,1 and R�,2.

As a function of ω, ζω
� (· · · ) is a function of ω̄�nt�−� and hence independent of the

probabilities on line (5.24). Thus we get

E[R2
�,1] =

∑

x,x̃,x ′,x̃ ′
E
[
Pω{Xi

� = x, X̃ j
� = x̃}Pω{Xi

� = x ′, X̃ j
� = x̃ ′}]

×
∑

−M≤w≤M
−M≤w−z≤M

∑

−M≤w′≤M
−M≤w′−z′≤M

A�,n(x − x̃ + z)A�,n(x ′ − x̃ ′ + z′)

× E
[
ζω
� (x, x̃, z, w)ζω

� (x ′, x̃ ′, z′, w′)
]
. (5.26)

Lemma 4.2 implies that A�,n(x) is uniformly bounded over (�, n, x). Random variable
ζω
� (x, x̃, z, w) is mean zero and a function of the environments {ωx,�nt�−�, ωx̃,�nt�−�}.

Consequently the last expectation on line (5.26) vanishes unless {x, x̃} ∩ {x ′, x̃ ′} �= ∅.
The sums over z, w, z′, w′ contribute a constant because of their bounded range. Taking
all these into consideration, we obtain the bound

E[R2
�,1] ≤ C

(
P{Xi

� = X̃ i
�} + P{Xi

� = X̃ j
� } + P{X j

� = X̃ j
� }
)
. (5.27)

By (4.5) we get the bound

n−1
�nt�−1∑

�=0

E[R2
�,1] ≤ Cn−1/2 (5.28)

which vanishes as n → ∞.
For the remaining sum R�,2 observe first that

ζω
� (x, x̃, z, M) = uω�nt�−�(x̃, M − z) − Euω�nt�−�(x̃, M − z). (5.29)

Summed over 0 ≤ z ≤ 2M this vanishes, so we can start by rewriting as follows:

R�,2 =
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}

×
2M∑

z=0

�nt�−1∑

k=�+1

(
qk−�−1(x − x̃ + z + 1, 0) − qk−�−1(x − x̃, 0)

)
ζω
� (x, x̃, z, M)

= −
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}
2M∑

z=0

z∑

m=0

A�,n(x − x̃ + m, 0)ζω
� (x, x̃, z, M)

= −
∑

x,x̃

Pω{Xi
� = x, X̃ j

� = x̃}
2M∑

m=0

A�,n(x − x̃ + m, 0)ρ̄ω
� (x̃, x̃ + M − m),

where we abbreviated on the last line

ρ̄ω
� (x̃, x̃ + M − m) = ρω

� (x̃, x̃ + M − m) − Eρω
� (x̃, x̃ + M − m).
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Square the last representation for R�,2, take E-expectation, and note that

E
[
ρ̄ω

� (x̃, x̃ + M − m)ρ̄ω
� (x̃ ′, x̃ ′ + M − m′)

] = 0

unless x̃ = x̃ ′. Thus the reasoning applied to R�,1 can be repeated, and we conclude that
also n−1∑�nt�−1

�=0 ER2
�,2 → 0.

To summarize, we have verified (5.21), thereby (5.20) and condition (5.17) for the
martingale CLT. This completes the proof of Lemma 5.1. ��

6. Proofs for Forward Walks in a Random Environment

6.1. Proof of Theorem 3.4. The proof of Theorem 3.4 is organized in the same way as
the proof of Theorem 3.2 so we restrict ourselves to a few remarks. The Markov property
reads now (0 ≤ s < t, r ∈ R):

an(t, r) = an(s, r) +
∑

y∈Z

Pω
{

Z �r
√

n�,0
�ns� = �r

√
n� + �nsV � + y

}

×n−1/4
{

Eω
(

Z �r
√

n�+�nsV �+y,�ns�
�nt�−�ns�

)
− �r

√
n� − y − �nt�V

}

+n−1/4(�ns�V − �nsV �).
This serves as the basis for the inductive proof along time levels, exactly as done in the
argument following (5.3).

Lemma 5.1 about the convergence at a fixed t-level applies to an(t, ·) exactly as
worded. This follows from noting that, up to a trivial difference from integer parts, the
processes an(t, ·) and yn(t, ·) are the same. Precisely, if S denotes the P-preserving
transformation on � defined by (Sω)x,τ = ω−�ntb�+x,�nt�−τ , then

E Sω(X �ntb�+�r
√

n�,�nt�
�nt� ) − �r

√
n� = Eω(Z �r

√
n�,0

�nt� ) − �r
√

n� + �ntb�.
The errors in the inductive argument are treated with the same arguments as used in
Lemma 5.2 to treat Rn, j (a).

6.2. Proof of Corollary 3.5. We start with a moment bound that will give tightness of
the processes.

Lemma 6.1. There exists a constant 0 < C < ∞ such that, for all n ∈ N,

E
[
(Eω(Z0,0

n ) − nV )6] ≤ Cn3/2.

Proof. From

E
[(

Eωg(TZ̄ x,0
n

ω) − Eωg(TZ̄0,0
n

ω)
)2] = 2σ 2

D

(
P[Y 0

n = 0] − P[Y x
n = 0])

we get

P[Y x
n = 0] ≤ P[Y 0

n = 0] for all n ≥ 0 and x ∈ Z. (6.1)

Abbreviate Z̄n = Z̄0,0
n for this proof. Eω(Zn) − nV is a mean-zero martingale with

increments Eωg(TZ̄k
ω) relative to the filtration Hn = σ {ω̄k : 0 ≤ k < n}. By the

Burkholder-Davis-Gundy inequality [7],
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E
[
(Eω(Zn) − nV )6] ≤ CE

[( n−1∑

k=0

[
Eωg(TZ̄k

ω)
]2)3

]

.

Expanding the cube yields four sums

C
∑

0≤k<n

E
[(

Eωg(TZ̄k
ω)
)6] + C

∑

0≤k1<k2<n

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)4]

+C
∑

0≤k1<k2<n

E

[(
Eωg(TZ̄k1

ω)
)4(

Eωg(TZ̄k2
ω)
)2]

+C
∑

0≤k1<k2<k3<n

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2(

Eωg(TZ̄k3
ω)
)2]

with a constant C that bounds the number of arrangements of each type. Replacing some
g-factors with constant upper bounds simplifies the quantity to this:

C
∑

0≤k<n

E
[(

Eωg(TZ̄k
ω)
)2] + C

∑

0≤k1<k2<n

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2]

+C
∑

0≤k1<k2<k3<n

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2(

Eωg(TZ̄k3
ω)
)2]

.

The expression above is bounded by C(n1/2 + n + n3/2). We show the argument for the
last sum of triple products. (Same reasoning applies to the first two sums.) It utilizes
repeatedly independence, Eg(Tuω)g(Tvω) = σ 2

D1{u=v} for u, v ∈ Z
2, and (6.1). Fix

0 ≤ k1 < k2 < k3 < n. Let Z̄ ′
k denote an independent copy of the walk Z̄k in the same

environment ω:

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2(

Eωg(TZ̄k3
ω)
)2]

= E

[
(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2

×
∑

u,v∈Z2

Pω{Z̄k3 = u}Pω{Z̄ ′
k3

= v}E{g(Tuω)g(Tvω)
}
]

= CE

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2

Pω{Z̄k3 = Z̄ ′
k3

}
]

= CE

[
(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2

×
∑

u,v∈Z2

Pω{Z̄k2+1 = u, Z̄ ′
k2+1 = v}

]

EPω{Z̄ u
k3−k2−1 = Z̄v

k3−k2−1}

(walks Z̄ u
k and Z̄v

k are independent under a common ω)

≤ CE

[
(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2

×
∑

u,v∈Z2

Pω{Z̄k2+1 = u, Z̄ ′
k2+1 = v}

]

P(Y 0
k3−k2−1 = 0)

= CE

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2]

P(Y 0
k3−k2−1 = 0).
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Now repeat the same step, and ultimately arrive at

∑

0≤k1<k2<k3<n

E

[(
Eωg(TZ̄k1

ω)
)2(

Eωg(TZ̄k2
ω)
)2(

Eωg(TZ̄k3
ω)
)2]

≤ C
∑

0≤k1<k2<k3<n

P(Y 0
k1

= 0)P(Y 0
k2−k1−1 = 0)P(Y 0

k3−k2−1 = 0)

≤ C · Gn−1(0, 0)3 ≤ Cn3/2.

��
By Theorem 8.8 in [12, Chap. 3],

E
[(

an(t + h, r) − an(t, r)
)3(

an(t, r) − an(t − h, r)
)3 ] ≤ Ch3/2

is sufficient for tightness of the processes {an(t, r) : t ≥ 0}. The left-hand side above is
bounded by

E
[(

an(t + h, r) − an(t, r)
)6 ] + E

[(
an(t, r) − an(t − h, r)

)6 ]
.

Note that if h < 1/(2n) then
(
an(t + h, r) − an(t, r)

)(
an(t, r) − an(t − h, r)

) = 0 due
to the discrete time of the unscaled walks, while if h ≥ 1/(2n) then �n(t + h)�−�nt� ≤
3nh. Putting these points together shows that tightness will follow from the next moment
bound.

Lemma 6.2. There exists a constant 0 < C < ∞ such that, for all 0 ≤ m < n ∈ N,

E
[({Eω(Z0,0

n ) − nV } − {Eω(Z0,0
m ) − mV })6 ] ≤ C(n − m)3/2.

Proof. The claim reduces to Lemma 6.1 by restarting the walks at time m. ��
Convergence of finite-dimensional distributions in Corollary 3.5 follows from Theo-

rem 3.4. The limiting process ā(·)= lim an(·, r) is identified by its covariance Eā(s)ā(t)=
�q
(
(s ∧ t, r), (s ∧ t, r)

)
. This completes the proof of Corollary 3.5.

7. Proofs for the Random Average Process

This section requires Theorem 3.2 from the space-time RWRE section.

7.1. Separation of effects. As the form of the limiting process in Theorem 2.1 suggests,
we can separate the fluctuations that come from the initial configuration from those cre-
ated by the dynamics. The quenched means of the RWRE represent the latter. We start
with the appropriate decomposition. Abbreviate

xn,r = x(n, r) = �n ȳ� + �r
√

n �.
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Recall that we are considering ȳ ∈ R fixed, while (t, r) ∈ R+ ×R is variable and serves
as the index for the process,

σ n�nt�(xn,r + �ntb�) − σ n
0 (xn,r ) = Eω

[
σ n

0 (X x(n,r)+�ntb�, �nt�
�nt� ) − σ n

0 (xn,r )
]

= Eω

[

1{
X x(n,r)+�ntb�, �nt�

�nt� >x(n,r)
}

X x(n,r)+�ntb�, �nt�
�nt� ∑

i=x(n,r)+1

ηn
0(i)

−1{
X x(n,r)+�ntb�, �nt�

�nt� <x(n,r)
}

x(n,r)∑

i=X x(n,r)+�ntb�, �nt�
�nt� +1

ηn
0(i)

]

=
∑

i>x(n,r)

Pω
{

i ≤ X x(n,r)+�ntb�, �nt�
�nt�

}
· ηn

0(i)

−
∑

i≤x(n,r)

Pω
{

i > X x(n,r)+�ntb�, �nt�
�nt�

}
· ηn

0(i).

Recalling the means �(i/n) = Eηn
0(i) we write this as

σ n�nt�(xn,r + �ntb�) − σ n
0 (xn,r ) = Y n(t, r) + Hn(t, r), (7.1)

where

Y n(t, r) =
∑

i∈Z

(
ηn

0(i) − �(i/n)
)(

1{i > xn,r }Pω
{

i ≤ X x(n,r)+�ntb�, �nt�
�nt�

}

− 1{i ≤ xn,r }Pω
{
i > X x(n,r)+�ntb�, �nt�

�nt�
})

and

Hn(t, r) =
∑

i∈Z

�(i/n)
(

1{i > xn,r }Pω
{
i ≤ X x(n,r)+�ntb�, �nt�

�nt�
}

− 1{i ≤ xn,r }Pω
{
i > X x(n,r)+�ntb�, �nt�

�nt�
})

.

The plan of the proof of Theorem 2.1 is summarized in the next lemma. In the pages
that follow we then show the finite-dimensional weak convergence n−1/4 Hn → H , and
the finite-dimensional weak convergence n−1/4Y n → Y for a fixed ω. This last statement
is actually not proved quite in the strength just stated, but the spirit is correct. The distri-
butional limit n−1/4Y n → Y comes from the centered initial increments ηn

0(i)−�(i/n),

while a homogenization effect takes place for the coefficients Pω{i ≤ X x(n,r)+�ntb�, �nt�
�nt� }

which converge to limiting deterministic Gaussian probabilities. Since the initial height
functions σ n

0 and the random environments ω that drive the dynamics are independent,
we also get convergence n−1/4(Y n + Hn) → Y + H with independent terms Y and H .
This is exactly the statement of Theorem 2.1.

Lemma 7.1. Let (�0,F0, P0) be a probability space on which are defined independent
random variables η and ω with values in some abstract measurable spaces. The marginal
laws are P for ω and P for η, and Pω = δω ⊗ P is the conditional probability distribu-
tion of (ω, η), given ω. Let Hn(ω) and Yn(ω, η) be R

N -valued measurable functions of
(ω, η). Make assumptions (i)–(ii) below.
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(i) There exists an R
N -valued random vector H such that Hn(ω) converges weakly to H.

(ii) There exists an R
N -valued random vector Y such that, for all θ ∈ R

N ,

Eω[eiθ ·Yn ] → E(eiθ ·Y) in P-probability as n → ∞.

Then Hn + Yn converges weakly to H + Y, where H and Y are independent.

Proof. Let θ, λ be arbitrary vectors in R
N . Then

∣
∣
∣EEω

[
eiλ·Hn+iθ ·Yn

]
− E

[
eiλ·H] E

[
eiθ ·Y]

∣
∣
∣

≤
∣
∣
∣E
[
eiλ·Hn

(
Eωeiθ ·Yn − Eeiθ ·Y)]

∣
∣
∣ +
∣
∣
∣
(
Eeiλ·Hn − Eeiλ·H) Eeiθ ·Y

∣
∣
∣

≤
∣
∣
∣E
[
eiλ·Hn

(
Eωeiθ ·Yn − Eeiθ ·Y)]

∣
∣
∣ +
∣
∣
∣Eeiλ·Hn − Eeiλ·H

∣
∣
∣ .

By assumption (i), the second term above goes to 0. By assumption (ii), the integrand
in the first term goes to 0 in P-probability. Therefore by bounded convergence the first
term goes to 0 as n → ∞. ��

Turning to the work itself, we check first that Hn(t, r) can be replaced with a quenched
RWRE mean. Then the convergence Hn → H follows from the RWRE results.

Lemma 7.2. For any S, T < ∞ and for P-almost every ω,

lim
n→∞ sup

0≤t≤T
−S≤r≤S

n−1/4
∣
∣
∣Hn(t, r) − �(ȳ) · Eω

(
X x(n,r)+�ntb�, �nt�

�nt� − xn,r
)∣∣
∣ = 0.

Proof. Decompose Hn(t, r) = Hn
1 (t, r) − Hn

2 (t, r), where

Hn
1 (t, r) =

∑

i>x(n,r)

Pω
{

i ≤ X x(n,r)+�ntb�, �nt�
�nt�

}
· �(i/n),

Hn
2 (t, r) =

∑

i≤x(n,r)

Pω
{

i > X x(n,r)+�ntb�, �nt�
�nt�

}
· �(i/n).

Working with Hn
1 (t, r), we separate out the negligible error,

Hn
1 (t, r) = �(ȳ)

∑

i>x(n,r)

Pω
{

i ≤ X x(n,r)+�ntb�, �nt�
�nt�

}

+
∑

i>x(n,r)

Pω
{

i ≤ X x(n,r)+�ntb�, �nt�
�nt�

}
· [�(i/n) − �(ȳ)

]

= �(ȳ) · Eω
[(

X x(n,r)+�ntb�, �nt�
�nt� − xn,r

)+]
+ R1(t, r)

with

R1(t, r) =
∞∑

m=1

Pω
{

xn,r + m ≤ X x(n,r)+�ntb�, �nt�
�nt�

}
·
[
�
( xn,r

n
+

m

n

)
− �(ȳ)

]
.
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Fix a small positive number δ < 1
2 , and use the boundedness of probabilities and the

function �:

|R1(t, r)| ≤
�n1/2+δ�∑

m=1

∣
∣
∣�
( xn,r

n
+

m

n

)
− �(ȳ)

∣
∣
∣

+ C ·
∞∑

m=�n1/2+δ�+1

Pω
{

xn,r + m ≤ X x(n,r)+�ntb�, �nt�
�nt�

}
. (7.2)

By the local Hölder-continuity of � with exponent γ > 1
2 , the first sum is o(n1/4) if

δ > 0 is small enough. Since X x(n,r)+�ntb�,�nt�
0 = xn,r +�ntb� and by time �nt� the walk

has displaced by at most M�nt�, there are at most O(n) nonzero terms in the second
sum in (7.2). Consequently this sum is at most

Cn · Pω
{

X x(n,r)+�ntb�, �nt�
�nt� − xn,r ≥ �n1/2+δ�

}
.

By Lemma 4.3 the last line vanishes uniformly over t ∈ [0, T ] and r ∈ [−S, S] as
n → ∞, for P-almost every ω. We have shown

lim
n→∞ sup

0≤t≤T
−S≤r≤S

n−1/4
∣
∣
∣Hn

1 (t, r) − �(ȳ) · Eω
[(

X x(n,r)+�ntb�, �nt�
�nt� − xn,r

)+ ]
∣
∣
∣ = 0 P-a.s.

Similarly one shows

lim
n→∞ sup

0≤t≤T
−S≤r≤S

n−1/4
∣
∣
∣Hn

2 (t, r) − �(ȳ) · Eω
[(

X x(n,r)+�ntb�, �nt�
�nt� − xn,r

)− ]∣∣
∣ = 0 P-a.s.

The conclusion follows from the combination of these two. ��
For a fixed n and ȳ, the process Eω

(
X x(n,r)+�ntb�, �nt�

�nt� − xn,r
)

has the same distribu-
tion as the process yn(t, r) defined in (3.6). A combination of Lemma 7.2 and Theorem
3.2 imply that the finite-dimensional distributions of the processes n−1/4 Hn converge
weakly, as n → ∞, to the finite-dimensional distributions of the mean-zero Gaussian
process H with covariance

E H(s, q)H(t, r) = �(ȳ)2�q((s, q), (t, r)). (7.3)

7.2. Finite-dimensional convergence of Y n. Next we turn to convergence of the finite-
dimensional distributions of process Y n in (7.1). Recall that B(t) is standard Brownian
motion, and σ 2

a = E[(X0,0
1 − V )2] is the variance of the annealed walk. Recall the

definition

�0((s, q), (t, r)) =
∫ ∞

q∨r
P[σa B(s) > x − q]P[σa B(t) > x − r ] dx

−
{

1{r>q}
∫ r

q
P[σa B(s) > x − q]P[σa B(t) ≤ x − r ] dx

+1{q>r}
∫ q

r
P[σa B(s) ≤ x − q]P[σa B(t) > x − r ] dx

}

+
∫ q∧r

−∞
P[σa B(s) ≤ x − q]P[σa B(t) ≤ x − r ] dx .
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Recall from (2.9) that v(ȳ) is the variance of the increments around �n ȳ�. Let {Y (t, r) :
t ≥ 0, r ∈ R} be a real-valued mean-zero Gaussian process with covariance

EY (s, q)Y (t, r) = v(ȳ)�0((s, q), (t, r)). (7.4)

Fix N and space-time points (t1, r1), . . . , (tN , rN ) ∈ R+ × R. Define vectors

Yn = n−1/4(Y n(t1, r1), . . . , Y n(tN , rN )
)

and Y = (Y (t1, r1), . . . , Y (tN , rN )
)
.

This section is devoted to the proof of the next proposition, after which we finish the
proof of Theorem 2.1.

Proposition 7.1. For any vector θ = (θ1, . . . , θN ) ∈ R
N , Eω(eiθ ·Yn

) → E(eiθ ·Y) in
P-probability as n → ∞.

Proof. Let G be a centered Gaussian variable with variance

S = v(ȳ)

N∑

k, l=1

θkθl�0((tk, rk), (tl , rl))

and so θ · Y is distributed like G. We will show that

Eω(eiθ ·Yn
) → E(eiG) in P-probability. (7.5)

Recalling the definition of Y n(t, r), introduce some notation:

ζω
n (i, t, r) = 1{i > xn,r }Pω

{
i ≤ X x(n,r)+�ntb�, �nt�

�nt�
}

− 1{i ≤ xn,r }Pω
{
i > X x(n,r)+�ntb�, �nt�

�nt�
}

so that

Y n(t, r) =
∑

i∈Z

(
ηn

0(i) − �(i/n)
)
ζω

n (i, t, r).

Then put

νω
n (i) =

N∑

k=1

θk ζω
n (i, tk, rk)

and

Un(i) = n−1/4 (ηn
0(i) − �(i/n)

)
νω

n (i).

Consequently

θ · Yn =
∑

i∈Z

Un(i).

To separate out the relevant terms let δ > 0 be small and define

Wn =
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
Un(i).
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For fixed ω and n, under the measure Pω the variables {Un(i)} are constant multiples of
centered increments ηn

0(i) − �(i/n) and hence independent and mean zero. Recall also
that second moments of centered increments ηn

0(i) − �(i/n) are uniformly bounded.
Thus the terms left out of Wn satisfy

Eω
[
(Wn − θ · Yn)2 ] ≤ Cn−1/2

∑

i :|i−�n ȳ� | > n1/2+δ

νω
n (i)2,

and we wish to show that this upper bound vanishes for P-almost every ω as n → ∞.
Using the definition of νω

n (i), bounding the sum on the right reduces to bounding sums
of the two types

n−1/2
∑

i :|i−�n ȳ� | > n1/2+δ

1{i > x(n, rk)}
(

Pω
{
i ≤ X x(n,rk )+�ntk b�, �ntk�

�ntk�
})2

and

n−1/2
∑

i :|i−�n ȳ� | > n1/2+δ

1{i ≤ x(n, rk)}
(

Pω
{
i > X x(n,rk )+�ntk b�, �ntk�

�ntk�
})2

.

For large enough n the points x(n, rk) lie within 1
2 n1/2+δ of �n ȳ�, and then the previous

sums are bounded by the sums

n−1/2
∑

i ≥ x(n,rk )+(1/2)n1/2+δ

(
Pω
{
i ≤ X x(n,rk )+�ntk b�, �ntk�

�ntk�
})2

and

n−1/2
∑

i ≤ x(n,rk )−(1/2)n1/2+δ

(
Pω
{
i > X x(n,rk )+�ntk b�, �ntk�

�ntk�
})2

.

These vanish for P-almost every ω as n → ∞ by Lemma 4.3, in a manner similar to the
second sum in (7.2). Thus Eω

[
(Wn − θ ·Yn)2

]→ 0 and our goal (7.5) has simplified to

Eω(eiWn ) → E(eiG) in P-probability. (7.6)

We use the Lindeberg-Feller theorem to formulate conditions for a central limit
theorem for Wn under a fixed ω. For Lindeberg-Feller we need to check two conditions:

(LF-i) Sn(ω) ≡
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
Eω
[
Un(i)

2
]

−→
n→∞ S,

(LF-ii)
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
Eω
[
Un(i)2 · 1{|Un(i)|>ε}

]
−→
n→∞ 0 for all ε > 0.



540 M. Balázs, F. Rassoul-Agha, T. Seppäläinen

To see that (LF-ii) holds, pick conjugate exponents p, q > 1 (1/p + 1/q = 1):

Eω
[
Un(i)2 · 1{Un(i)2>ε2}

]
≤
(

Eω
[
|Un(i)|2p

]) 1
p
(

Pω
[
Un(i)

2 > ε2
]) 1

q

≤ ε
− 2

q

(
Eω
[
|Un(i)|2p

]) 1
p
(

Eω
[
Un(i)2

]) 1
q

≤ Cn−1/2−1/(2q).

In the last step we used the bound |Un(i)| ≤ Cn−1/4
∣
∣ηn

0(i) − �(i/n)
∣
∣, boundedness

of �, and we took p close enough to 1 to apply assumption (2.11). Condition (LF-ii)
follows if δ < 1/(2q).

We turn to condition (LF-i):

Sn(ω) =
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
Eω
[
Un(i)2

]
=

�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
n−1/2v(i/n)[νω

n (i)]2

=
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
n−1/2 [v(i/n) − v(ȳ)] [νω

n (i)]2

+
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
n−1/2v(ȳ)[νω

n (i)]2.

Due to the local Hölder-property (2.10) of v, the first sum on the last line is bounded
above by

C(ȳ)n1/2+δn−1/2
[
n−1/2+δ

]γ = C(ȳ)nδ(1+γ )−γ /2 → 0

for sufficiently small δ. Denote the remaining relevant part by S̃n(ω), given by

S̃n(ω) =
�n ȳ�+�n1/2+δ�∑

i=�n ȳ�−�n1/2+δ�
n−1/2v(ȳ)[νω

n (i)]2 = v(ȳ)n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�

(
νω

n (m + �n ȳ�))2

= v(ȳ)

N∑

k, l=1

θkθl n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�
ζω

n (�n ȳ� + m, tk, rk)ζ
ω
n (�n ȳ� + m, tl , rl).

(7.7)

Consider for the moment a particular (k, l) term in the first sum on line (7.7). Rename
(s, q) = (tk, rk) and (t, r) = (tl , rl). Expanding the product of the ζω

n -factors gives three
sums:
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n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�
ζω

n (�n ȳ� + m, s, q)ζω
n (�n ȳ� + m, t, r)

= n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�
1{m>�q

√
n �}1{m>�r

√
n �} Pω

(
X x(n,q)+�nsb�, �ns�

�ns� ≥ �n ȳ� + m
)

×Pω
(
X x(n,r)+�ntb�, �nt�

�nt� ≥ �n ȳ� + m
)

(7.8)

− n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�

{

1{m>�q
√

n �}1{m≤�r
√

n �} Pω
(
X x(n,q)+�nsb�, �ns�

�ns� ≥ �n ȳ� + m
)

×Pω
(
X x(n,r)+�ntb�, �nt�

�nt� < �n ȳ� + m
)

+ 1{m≤�q
√

n �}1{m>�r
√

n �} Pω
(
X x(n,q)+�nsb�, �ns�

�ns� < �n ȳ� + m
)

×Pω
(
X x(n,r)+�ntb�, �nt�

�nt� ≥ �n ȳ� + m
)
}

(7.9)

+ n−1/2
�n1/2+δ�∑

m=−�n1/2+δ�
1{m≤�q

√
n �}1{m≤�r

√
n �} Pω

(
X x(n,q)+�nsb�, �ns�

�ns� < �n ȳ� + m
)

×Pω
(
X x(n,r)+�ntb�, �nt�

�nt� < �n ȳ� + m
)
. (7.10)

Each of these three sums (7.8)–(7.10) converges to a corresponding integral in P-prob-
ability, due to the quenched CLT Theorem 3.1. To see the correct limit, just note that

Pω
(
X x(n,r)+�ntb�, �nt�

�nt� < �n ȳ� + m
)

= Pω
(
X x(n,r)+�ntb�, �nt�

�nt� − X x(n,r)+�ntb�,�nt�
0 < −�ntb� + m − �r

√
n � ),

and recall that −b = V is the average speed of the walks. We give technical details of
the argument for the first sum in the next lemma.

Lemma 7.3. As n → ∞, the sum in (7.8) converges in P-probability to

∫ ∞

q∨r
P[σa B(s) > x − q]P[σa B(t) > x − r ] dx .

Proof of Lemma 7.3. With

f ω
n (x) = Pω

(
X x(n,q)+�nsb�, �ns�

�ns� ≥ �n ȳ� + �x
√

n�)

×Pω
(
X x(n,r)+�ntb�, �nt�

�nt� ≥ �n ȳ� + �x
√

n�)

and

I ω
n =

∫ nδ

q∨r
f ω
n (x)dx,
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the sum in (7.8) equals I ω
n + O(n−1/2). By the quenched invariance principle Theorem

3.1, for any fixed x , f ω
n (x) converges in P-probability to

f (x) = P[σa B(s) ≥ x − q]P[σa B(t) ≥ x − r ].

We cannot claim this convergence P-almost surely because the walks X x(n,r)+�ntb�, �nt�
�nt�

change as n changes. But by a textbook characterization of convergence in probability,
for a fixed x each subsequence n( j) has a further subsequence n( j�) such that

P

[
ω : f ω

n( j�)
(x) −→

�→∞ f (x)
]

= 1.

By the diagonal trick, one can find one subsequence for all x ∈ Q and thus

∀{n( j)}, ∃{ j�} : P

[
ω : ∀x ∈ Q : f ω

n( j�)
(x) → f (x)

]
= 1.

Since f ω
n and f are nonnegative and nonincreasing, and f is continuous and decreases

to 0, the convergence works for all x and is uniform on [q ∨ r,∞). That is,

∀{n( j)}, ∃{ j�} : P

[
ω :

∥
∥
∥ f ω

n( j�)
− f

∥
∥
∥

L∞[q∨r,∞)
→ 0

]
= 1.

It remains to make the step to the convergence of the integral I ω
n to

∫∞
q∨r f (x) dx .

Define now

Jω
n (A) =

∫ A

q∨r
f ω
n (x)dx .

Then, for any A < ∞,

∀{n( j)}, ∃{ j�} : P

[
ω : Jω

n( j�)
(A) →

∫ A

q∨r
f (x)dx

]
= 1.

In other words, Jω
n (A) converges to

∫ A
q∨r f (x)dx in P-probability. Thus, for each 0 <

A < ∞, there is an integer m(A) such that for all n ≥ m(A),

P

[

ω :
∣
∣
∣Jω

n (A) −
∫ A

q∨r
f (x)dx

∣
∣
∣ > A−1

]

< A−1.

Pick An ↗ ∞ such that m(An) ≤ n. Under the annealed measure P , X0,0
n is a homo-

geneous mean zero random walk with variance O(n). Consequently
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E[ |I ω
n − Jω

n (An)| ] ≤
∫ ∞

An∧nδ

E[ f ω
n (x)]dx

≤
∫ ∞

An∧nδ

P
(

X x(n,r)+�ntb�, �nt�
�nt� ≥ x(n, r) − �r

√
n�

+�x
√

n�
)

dx −→
n→∞ 0.

Combine this with

P

[
ω :

∣
∣
∣Jω

n (An) −
∫ An

q∨r
f (x)dx

∣
∣
∣ > A−1

n

]
< A−1

n .

Since
∫ An

q∨r f (x)dx converges to
∫∞

q∨r f (x)dx , we have shown that I ω
n converges to this

same integral in P-probability. This completes the proof of Lemma 7.3. ��
We return to the main development, the proof of Proposition 7.1. Apply the argu-

ment of the lemma to the three sums (7.8)–(7.10) to conclude the following limit in
P-probability:

lim
n→∞ n−1/2

�n1/2+δ�∑

m=−�n1/2+δ�
ζω

n (�n ȳ� + m, s, q)ζω
n (�n ȳ� + m, t, r)

=
∫ ∞

q∨r
P[σa B(s) > x − q]P[σa B(t) > x − r ] dx

−
{

1{r>q}
∫ r

q
P[σa B(s) > x − q]P[σa B(t) ≤ x − r ] dx

+1{q>r}
∫ q

r
P[σa B(s) ≤ x − q]P[σa B(t) > x − r ] dx

}

+
∫ q∧r

−∞
P[σa B(s) ≤ x − q]P[σa B(t) ≤ x − r ] dx

= �0((s, q), (t, r)).

Return to condition (LF-i) of the Lindeberg-Feller theorem and the definition (7.7)
of S̃n(ω). Since Sn(ω) − S̃n(ω) → 0 as pointed out above (7.7), we have shown that
Sn → S in P-probability. Consequently

∀{n( j)}, ∃{ j�} : P

[
ω : Sn( j�)(ω) → S

]
= 1.

This can be rephrased as: given any subsequence {n( j)}, there exists a further sub-
sequence {n( j�)} along which conditions (LF-i) and (LF-ii) of the Lindeberg-Feller
theorem are satisfied for the array
{

Un( j�)(i) : �n( j�)ȳ� − �n( j�)
1/2+δ� ≤ i ≤ �n( j�)ȳ� + �n( j�)

1/2+δ� , � ≥ 1
}

under the measure Pω for P-a.e. ω. This implies that

∀{n( j)}, ∃{ j�} : P

[
ω : Eω(eiWn( j�) ) → E(eiG)

]
= 1.

But the last statement characterizes convergence Eω(eiWn ) → E(eiG) in P-probability.
As we already showed above that Wn − θ · Yn → 0 in Pω-probability P-almost surely,
this completes the proof of Proposition 7.1. ��
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7.3. Proofs of Theorem 2.1 and Proposition 2.2.

Proof of Theorem 2.1. The decomposition (7.1) gives zn = n−1/4(Y n + Hn). The para-
graph that follows Lemma 7.2 and Proposition 7.1 verify the hypotheses of Lemma 7.1
for Hn and Y n . Thus we have the limit zn → z ≡ Y + H in the sense of convergence
of finite-dimensional distributions. Since Y and H are mutually independent mean-zero
Gaussian processes, their covariances in (7.3) and (7.4) can be added to give (2.18). ��
Proof of Proposition 2.2. The value (2.23) for β can be computed from (2.8), or from
the probabilistic characterization (4.4) of β via Example 4.1. If we let u denote a random
variable distributed like u0(0,−1), then we get

β = Eu − E(u2)

Eu − (Eu)2 and κ = E(u2) − (Eu)2

Eu − E(u2)
.

With obvious notational simplifications, the evolution step (2.22) can be rewritten as

η′(k) − ρ = (1 − uk)(η(k) − ρ) + uk−1(η(k − 1) − ρ) + (uk−1 − uk)ρ.

Square both sides, take expectations, use the independence of all variables {η(k −
1), η(k), uk, uk−1} on the right, and use the requirement that η′(k) have the same variance
v as η(k) and η(k − 1). The result is the identity

v = v(1 − 2Eu + 2E(u2)) + 2ρ2(E(u2) − (Eu)2)

from which follows v = κρ2. The rest of part (b) is a straightforward specialization of
(2.18). ��
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