FPP Geodesics

Firas Rassoul-Agha University of Utah October 20, 2018

Joint with Arjun Krishnan (Rochester) and Timo Seppäläinen (Madison)

$d \geq 2$
i.i.d. (enough moments, >d)

$$
k(\pi)=\sum t(e)
$$

$r_{0}=\operatorname{essin} f t(e)$
If $r_{0}=0: P\{t(e)=0\}<p_{c}$ (bond percolation probability)

Shape Theorem (Richardson '73, Cox-Durrett '81)

$\mu:$ convex $\&$ homogenous
$\mu(\xi)>0$ when $\xi \neq 0$

$$
\lim _{|x| \rightarrow \infty} \frac{\left|T_{0, x}-\mu(x)\right|}{|x|}=0 \quad \text { a.s. }
$$

Interested in $l(\xi)=\lim \frac{\left|\pi_{0 n \xi}\right|}{n}$ exists??

$L_{x, y}=$ min. length $\bar{L}_{x, y}=$ max. length
$L(\xi)=\operatorname{essin} f \operatorname{Lim} \frac{\operatorname{Lon}_{n} \xi}{n} \quad i(\xi)=\operatorname{esssup} \overline{\lim } \frac{\operatorname{L}_{0, n \xi}}{n}$

Kesten: $\bar{i}(\xi) \leq C|\xi| \quad$ (LD bounds: $P\left\{\bar{L}_{0, x} \geq C|x|\right\} \leq e^{-c|x|}$)
Q. $\quad \underline{l}(\xi)=[(\xi)$?

$$
G_{x,(n), y}=\inf _{|\pi|=n} t(\pi)
$$

$$
c_{x,(n), y}^{0}=\inf _{|\pi| \leq n} k(\pi)
$$

length is now a variable

$$
\widehat{\wedge}
$$ G and G° can repeat edges

bridges G and T

$$
\frac{G_{0,(n \alpha), n \xi}}{n} \rightarrow \alpha g\left(\frac{\xi}{2}\right) \frac{G_{0,(n \alpha), n \xi}^{0}}{n} \rightarrow \alpha g\left(\frac{\xi}{2}\right)
$$

Shifting $t \rightarrow t+b=t^{(b)} \Rightarrow \alpha g\left(\frac{\xi}{2}\right) \rightarrow \alpha g\left(\frac{\xi}{2}\right)+b \alpha$ near-geodesics

$$
\lambda^{-(b)}(\xi) \xrightarrow[b \rightarrow \infty]{ }|\xi|
$$

(high weights \Rightarrow high sensitivity)
assume $r_{0}=0$

$$
\begin{equation*}
|\xi|<\lambda(\xi) \leq \lambda^{-(b)}(\xi) \leq \lambda^{(a)}(\xi) \leq \lambda^{-(a)}(\xi) \leq \lambda(\xi) \leq c|\xi| \tag{b>a}
\end{equation*}
$$

Different possible geo lengths for different shifts DO NOT MIX, even for distinct typical w!
$\mu(\xi) \rightarrow \mu^{(b)}(\xi)=\phi(b) \approx \mu(\xi)+b^{\prime \prime} L(\xi)^{\prime \prime} \quad b \approx 0$ ϕ is concave: " $\phi^{\prime}(b)=l^{(b)}(\xi)$ non-increasing"
Existence of $l(\xi) \longleftrightarrow \phi$ differentiable at $b=0$

Precisely:

$$
\mu(\xi)=\inf _{\alpha \geqslant|\xi|} \alpha g\left(\frac{\xi}{2}\right)
$$

$$
\text { Duality: } \quad \phi(b)=\inf _{\alpha \geq|\xi|}\left\{\alpha g\left(\frac{\xi}{2}\right)+b \alpha\right\}
$$

$\left[\underline{\lambda}, \hat{\lambda}^{(b)}\right]=$ Slopes of ϕ at b

Steele \& Zhang '03: $\quad d=2$
$t(e) \sim \operatorname{Ber}(1-p)$ with $p<p_{c}$ but p close enough to p_{c} Then ϕ is not differentiable at $b=0$
Conjecture: ϕ is differentiable for all $b>0$
Theorem (Krishnan-RA-Seppäläinen '18)
General $t(e), r_{0}=0,0<P\{t(e)=0\}<p_{c}$
Then $P\left\{I_{0, x}-L_{0, x} \geq D|x|\right\} \geq \delta$
So ϕ is not differentiable at $b=0$

Theorem (Krishnan-RA-Seppäläinen '18) Unbounded $k(e)$ with at least two atoms,

$$
r_{0} \geq 0,0<P\left\{t(e)=r_{0}\right\}<P_{c}
$$

Then there exists a countable dense $B \subset\left(-r_{0}, \infty\right)$

$$
\text { s.t. } \forall b \in B \quad L^{(b)}(\xi)<l^{(b)}(\xi)
$$

So ϕ is not differentiable at any beS

Steel $\&$ Zhang's conjecture \Rightarrow
B completely disappears as unbounded component is removed!

$$
\phi(b), b<-r_{0} ?!
$$

Replace T by

$$
T^{s a}=\inf \{E(\pi): \pi \text { self avoiding }\}
$$

$O K$ if b is a $b i L<-r_{0} \quad\binom{$ subadditivity restored }{ by restricting to stabs }
Smythe \& Wierman '78: $P\left\{E(e)=r_{0}\right\}<\varepsilon<p_{c}$
Then $\vec{a} \delta>0$ s.E. $b \geq-r_{0}-\delta$ is $O K$
Works for ergodic k
Kesten '80:
i.i.d. $k(e) \Rightarrow P\left\{k(e)=r_{0}\right\}<p_{c}$ enough

General $t(e), r_{0}=0,0<P\{t(e)=0\} \leq P_{c}$
$B \quad B$: good if $T(\pi)>0 \forall \pi \subset B$ with $|\pi| \geq N$
$N \backsim \prod^{\pi} P\{B \operatorname{good}\} \underset{N \longrightarrow \infty}{ } 1$
$N \pi_{0 x}$: some geo from o to x, min. length

$$
\Lambda_{B}=\left\{\omega: B \text { good, } B \cap \pi_{0 x} \neq \phi\right\}
$$

$\sum_{B} P\left\{\wedge_{B}\right\}=E\left[\# \operatorname{good} B\right.$ along $\left.\pi_{o x}\right] \geq c|x|$
ω^{*} : resample inside $B,=\omega$ outside B
$\Delta_{B}^{*}=\left\{\omega^{*}: E^{*}=0\right.$ inside $\left.B\right\}$ independent of Λ_{B}
on $\Lambda_{B} \cap \bigwedge_{B}^{*}$: every t^{*} geo $\pi_{o x}^{*}$ must enter B

$$
t^{*}\left(\pi_{0 x}^{*}\right)=t\left(\pi_{o x}^{*}\right) \geq t\left(\pi_{o_{x}}\right)>t^{*}\left(\pi_{o x}\right)
$$

$\pi_{0 x}^{*}$ w/ min. length can be made 2 steps longer

