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length is now a variable
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with t(0)=0
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(short edge repeats)
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near-geodesics

g

Unbounded t(e) 
Van den Berg 

Kesten 
Modification 
arguments



Shifting t t+b=t(b) g( ) g( )+b

assume r0=0

near-geodesics
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b>0 b<0 b=-r0
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Different possible geo lengths for different shifts 
DO NOT MIX, even for distinct typical w! 
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(high weights high sensitivity) 

(b>a)



µ( ) ) = Ø(b) ≈ µ( ) + b )’’   b≈0

Existence of l 
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Steele & Zhang ’03:

t(e)~ Ber(1-p) with p < p
c but p close enough to p

c

Then Ø is not differentiable at b=0 

Conjecture: Ø is differentiable for all b>0

Theorem (Krishnan-RA-Seppäläinen ’18)

General t(e), r
0
=0, 0<P{t(e)=0} < p

c
Then P{ 

So Ø is not differentiable at b=0 

L0,x ≥ D |x|}≥ - L0,x

d=2



Theorem (Krishnan-RA-Seppäläinen ’18)

Unbounded t(e) with at least two atoms,

So Ø is not differentiable at any b 

Then there exists a countable dense B (-r0 ,∞)

s.t. b B ) <l ( )l (
(b) (b)

B

Steel & Zhang’s conjecture

B completely disappears as unbounded 
component is removed!

r
0 ≥0, 0<P{t(e)=r c

} < p0



Ø(b), b < -r0 ?!

Replace T by
sa
= inf {t(π): π self avoiding} T

OK if b is a bit < -r0
Smythe & Wierman ’78: P{t(e) = r }<0 < p

c
Then >0 s.t. b ≥ -r 0- is OK 

Kesten ’80:

Works for ergodic t

i.i.d. t(e) P{t(e) = r}< p0 c
enough

subadditivity restored  
by restricting to slabs



General t(e), r
0
=0, 0<P{t(e)=0} < p
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B π B with |π| ≥ NB: good if T(π)>0

P{B good}
N ∞
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∑P{ ] ≥ c|x|0xB

B = {w: B good, B π0x≠ø}

B} = E[#good B along π

π0x : some geo from 0 to x, min. length

B
= {w

w*: resample inside B, = w outside B

* = 0 inside B}: t*∆* independent of B

(LDP)
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