
MATH 5050: Homework 4 (Due Monday, April 14)

Problem 1 Consider the heat equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + 3

∂u

∂x
(t, x) for t > 0 and all x,(1)

with initial heat profile u(0, x) = e−x2
. Similarly to how we solved the heat equation

without the ∂u
∂x term, one can solve this equation using a standard Brownian motion B as

follows:
u(t, x) = E[e−(x+σB(t)+µt)2 ].

Here, σ and µ need to be chosen appropriately, based on the coefficients in (1).

(a) We want to get an explicit formula for u. For this, first compute

1√
2π

∫ ∞

−∞
e−(az+b)2e−z2/2 dz.

Hint: This is a calculus question. Expand the squares, combine the z2 terms, complete
the square, and conclude by observing that you are led to a constant times the integral of
the pdf of a normal.

(b) Write u(t, x) as an integral, using the fact that B(t) is a normal random variable
with mean 0 and variance t and therefore has the same distribution as

√
tZ, where Z is a

standard normal. Then by making an appropriate choice of the numbers a and b in part
(a), find an explicit formula for u(t, x).

(c) Plug in your formula for u into (1) and figure out the values of σ and µ.

(d) Plot u(0, x).

(e) Let t = 0.1. What is the distribution of B(0.1)? Numerically compute and then plot
u(0.1, x), for x ∈ [−20, 20].

Hint: You do not need to generate a whole path of Brownian motion. Just need to
generate many (say 10, 000) samples of the variable B = B(0.1). Then calculate the sample

mean of e−(x+σB+0.1µ)2 to get the approximate value of u(0.1, x) for x going from −20 to
20 (with say increments of 0.01). [Make sure the mean is over the samples, not over the
x’s!]

(f) On the same graph, plot u(0.1, x) based on the formula you found in (b). This should
agree with the curve you plotted in (e).

(g) Repeat (e) and (f) for t = 1 and t = 10. Do plots look like what you expect u should
do? Explain.
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Problem 2 Let B(t) be standard Brownian motion. Let Y (t) take the value 1 if 0 ≤ t < 2
and the value 3B(2) if t ≥ 2. Prove that

M(t) =

∫ t

0
Y (s) dB(s)

is a martingale relative to the filtration given by Ft = {B(s) : s ≤ t}. (You need to do the
proof directly. You cannot just say that it is a martingale because it is a stochastic integral
of a progressively measurable function.)

Hint: M(t) can be easily computed. Consider the cases t < 2 and t ≥ 2 separately.
After that you need to prove that for s < t we have E[M(t)|Fs] = M(s). For this, consider
the cases s < t < 2, 2 ≤ s < t, and s < 2 ≤ t separately.

Problem 3 Let B(t) be standard Brownian motion.

(a) Calculate numerically
∫ t
0 B(s) dB(s) for 0 ≤ t ≤ 10. Use the leftmost points of the

partition intervals and then the rightmost points. Plot both processes (using the same
sample of Brownian motion, not two independent samples).

(b) Based on the plots, which of the two is the correct approximation of the stochastic
integral and why?

(c) Calculate
∫ t
0 B(s) dB(s) analytically (not numerically).

Hint: Use Itō’s formula:

f(B(t)) = f(B(0)) +

∫ t

0
f ′(B(s)) dB(s) +

1

2

∫ t

0
f ′′(B(s)) ds(2)

with f(x) = x2.

(d) If you use the same sample of Brownian motion that you used in part (a) to plot the
explicit solution you got in (c), then the latter should match one of the former two. Is this
the case? Does this agree with your answer to (b)?

Problem 4 Let B(t) be standard Brownian motion. Let λ be a positive constant and let

X(t) = eλB(t).

(a) Apply Itō’s formula (2) to the function f(x) = eλx to prove that X(t) solves

X(t) = 1 +
λ2

2

∫ t

0
X(s) ds+ λ

∫ t

0
X(s) dB(s).

(b) Let A(t) = E[X(t)]. Observe that A(0) = 1. Using the fact that a stochastic integral

is a martingale prove that A(t) = 1 + λ2

2

∫ t
0 A(s) ds.

(c) The equation in (b) says that A′(t)/A(t) = λ2

2 . Integrate both sides (and use A(0) =
1) to find the formula for A(t).

(d) What is the distribution of B(t)? Can you compute E[eλB(t)] directly? Does your
answer agree with (c)?

Hint: Recall moment generating functions!
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Recall the following variant of Itō’s formula: Let f(t, x) have two continuous derivatives
in x and one continuous derivative in t, and let Z(t) = f(t, B(t)). Let ∂tf denote the
derivative in the t variable and ∂xf and ∂xxf the first and second derivatives in the x
variable. Then a Taylor expansion (and ignoring texrms that have something smaller than
ds) gives

Z(t)− Z(0) =

∫ t

0
∂tf(s,B(s)) ds+

∫ t

0
∂xf(s,B(s)) dB(s) +

1

2

∫ t

0
∂xxf(s,B(s)) ds .

Problem 5 Let B(t) be a standard Brownian motion. Prove that M(t) = eλB(t)−λ2t/2 is a
martingale in the filtration of Brownian motion Ft = {B(s) : s ≤ t}.

Hint: Apply Itō’s formula with f(t, x) = eλx−λ2t/2 to prove that M(t) is equal to a
stochastic integral. An alternate way would be by computing E[M(t) |B(s)] using moment
generating functions. It is a good exercise that way too, but it does not let you practice
your Itō’s formula skills! So maybe it is best to do it both ways!


