
MATH 5040/6810: Homework 1 (Due Mon, Sep. 9)

Problem 1
a) Let A0, A1, A2, . . . be events such P(A0 ∩ . . .∩An) > 0 for all integers n ≥ 0. Show that
for all integers n ≥ 1

P(A0 ∩ · · · ∩An) = P(A0)P(A1|A0) · · ·P(An|A0 ∩ · · · ∩An−1).

Solution: For n = 1, the equation says P(A0 ∩ A1) = P(A0)P(A1|A0), which is true
by the definition of conditional probability. Assume now that the equation is true for an
arbitrary integer n. We will prove that then it is true for n+ 1. Indeed,

P(A0)P(A1|A0) · · ·P(An|A0 ∩ · · · ∩An−1)P(An+1|A0 ∩ · · · ∩An)

= P(A0 ∩ · · · ∩An)P(An+1|A0 ∩ · · · ∩An)

= P(A0 ∩ · · · ∩An+1).

Explanation: the first equality comes from the induction assumption that the equation is
valid for n and the second equality uses the definition of conditional probability.

Since we proved that the equation is true for n = 1 and that if it is true for an integer
n, then it is true for the integer n+1, we conclude that the equation is true for all integers
n. (E.g. if we want to conclude that it is true for n = 4, then we argue that since it is true
for n = 1, it is true for n = 1+ 1 = 2, and hence also for n = 2+ 1 = 3, and, therefore, for
n = 3 + 1 = 4 as well.)

b) Consider a stochastic process {X0, X1, . . .} on a state space S = {a, b, c}. What does the
equation in part a) say about the probability P{X0 = a,X1 = b,X2 = c,X3 = b,X4 = c}?

Solution:

P{X0 = a,X1 = b,X2 = c,X3 = b,X4 = c}
= P{X0 = a}P{X1 = b|X0 = a}P{X2 = c|X0 = a,X1 = b}

× P{X3 = b|X0 = a,X1 = b,X2 = c}P{X4 = c|X0 = a,X1 = b,X2 = c,X3 = b}.

c) How does the equation you got in part b) simplify if we assume the process in part b)
to be a Markov process?

Solution:

P{X0 = a,X1 = b,X2 = c,X3 = b,X4 = c}
= P{X0 = a}P{X1 = b|X0 = a}P{X2 = c|X1 = b}P{X3 = b|X2 = c}P{X4 = c|X3 = b}.

Problem 2
Consider the following Markov chain on state space {a, b, c}: the chain starts at a, b, or c
with probability, respectively, 1/2, 1/6, and 1/3. Then, from a the chain either stays at a
with probability 1/3, or goes to c; from b the chain goes to a or c with probability 1/2 each;
and from c the chain goes to a, b, or c, with probabilities 1/2, 1/4, and 1/4, respectively.

a) Write the transition matrix of the Markov chain.
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Solution:

P =

1/3 0 2/3
1/2 0 1/2
1/2 1/4 1/4


b) Using the formula you developed in 1c) compute the probability P{X0 = a,X1 = c,X2 =
b,X3 = c,X4 = b}.

Solution:

P{X0 = a,X1 = c,X2 = b,X3 = c,X4 = b}
= P{X0 = a}P{X1 = c|X0 = a}P{X2 = b|X1 = c}P{X3 = c|X2 = b}P{X4 = b|X2 = c}
= 1/2× 2/3× 1/4× 1/2× 1/4.

c) Compute the probability P{X1 = c} by considering all the possible scenarios leading to
the event X1 = c.

Solution:

P{X1 = c} = P{X0 = a,X1 = c}+ P{X0 = b,X1 = c}+ P{X0 = c,X1 = c}
= P{X0 = a}P{X1 = c|X0 = a}+ P{X0 = b}P{X1 = c|X0 = b}+ P{X0 = c}P{X1 = c|X0 = c}
= 1/2× 2/3 + 1/6× 1/2 + 1/3× 1/4.

d) Compute P{X0 = a|X1 = c}.
Solution:

P{X0 = a|X1 = c} =
P{X0 = a,X1 = c}

P{X1 = c}
=

P{X0 = a}P{X1 = c|X0 = a}
P{X1 = c}

=
1/2× 2/3

1/2× 2/3 + 1/6× 1/2 + 1/3× 1/4
.

e) Compute the probability P{X5 = b}. (Hint: do NOT consider all possible scenarios
leading to the event X5 = b! It is OK to use a calculator to compute powers of matrices.)

Solution: Using a computer (e.g. matlab or R) we get

P 5 =

0.4285 0.1129 0.4586
0.4286 0.1145 0.4569
0.4286 0.1155 0.4559

 .

The initial condition is Φ0 = [1/2 1/6 1/3]. So

Φ5 = Φ0P
5 = [1/2 1/6 1/3]

0.4285 0.1129 0.4586
0.4286 0.1145 0.4569
0.4286 0.1155 0.4559

 = [0.4286 0.1141 0.4574].
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P{X5 = b} is the second entry of Φ5 and is, therefore, equal to 0.1141. To put it in other
words, recall that the entries of P 5 are the 5-step transition probabilities. So

P{X5 = b} = P{X0 = a,X5 = b}+ P{X0 = b,X5 = b}+ P{X0 = c,X5 = b}
= P{X0 = a}P{X5 = b|X0 = a}+ P{X0 = b}P{X5 = b|X0 = b}+ P{X0 = c}P{X5 = b|X0 = c}
= 1/2× 0.1129 + 1/6× 0.1145 + 1/3× 0.1155,

which is exactly the second entry of the row vector Φ0P
5.

f) Compute the invariant measure of the Markov chain. (OK to use a computer or a
calculator.)

Solution: Using a computer (e.g. matlab or R) we can get the right eigenvectors for
any given square matrix. But the invariant measure we are after is a left eigenvector of
the matrix P . It is thus a right eigenvector of the transpose matrix P ′. Asking Mat-
lab for the right eigenvector of the matrix P ′, corresponding to the eigenvalue 1 gives us
[0.6728 0.1794 0.7177]. Normalizing by 0.6728+0.1794+0.7177 = 1.57 (so that the entries
add up to 1) gives the invariant measure Φ∞ = [0.4286 0.1143 0.4571].

g) Compute the limit of P{Xn = b} as n → ∞. (Hint: Invariant measure.)
Solution: The Markov chain is irreducible (because with positive probability we can

get from a to c to b to a) and aperiodic (because for example a can go to a). Thus, the
Perron-Frobenius theorem tells us that the limit in question is the value of the invariant
measure at b. That is 0.1143.

Problem 3
You have a bag with 5 red balls and 3 blue ones. You also have an infinite reserve of red

and blue balls. Every minute you draw a ball at random from the bag and look at its color.
Then you return it to the bag and add with it, to the bag, another ball of that same color
(which you take from the infinite reserve). Let Xn denote the color of the ball you drew at
time n. Is Xn a Markov chain? Why or why not? If it is, write its transition matrix.

Solution: This is not a Markov chain. To see that, consider the following two scenarios.
In the first scenario, we run the process for n = 100 steps and happen to get a red ball
each time. Then X100 =“red” and we have 105 red balls and 3 blue ones. The probability
that the next ball is red, given this scenario, is 105/108. In the second scenario, we run the
process for n = 100 steps and happen to get a blue ball the first 99 times and then a red
ball. Then X100=“red” and we have 6 red balls and 102 blue balls. The probability that
the next ball is red, given this scenario, is 6/108 ̸= 105/108. If this were a Markov chain,
then to figure out the probability of X101=“red” we would only care about the fact that
X100=“red”, regardless of what happened in the previous 99 steps. But our computation
shows that the probabilities are in fact different and do depend on what happened before
time 100. So the process is not a Markov chain.

Problem 4
You have $4 in your pocket. You are given a coin that lands heads with probability p.

Every minute you toss the coin once. If it is heads you gain an extra $1. If it is tails you
lose a $1. If you reach $0 then you will have $0 for the rest of the game, regardless of what
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your coin comes up. The (small) House has $6. So if you reach $10 you will have $10 for
the rest of the game regardless of what your coin lands.

Is this a Markov chain? Why or why not? If it is, write its transition matrix.
Solution: Yes this is a Markov chain: if we know the current amount in our pocket, then

the probability mass function of the amount after the next move is completely determined.
For example, if we are at $5 we know that at the next step we will have $6, with probability
p, or $4, with probability 1− p. The transition matrix is

1 0 0 0 0 0 0 0 0 0 0
1− p 0 p 0 0 0 0 0 0 0 0
0 1− p 0 p 0 0 0 0 0 0 0
0 0 1− p 0 p 0 0 0 0 0 0
0 0 0 1− p 0 p 0 0 0 0 0
0 0 0 0 1− p 0 p 0 0 0 0
0 0 0 0 0 1− p 0 p 0 0 0
0 0 0 0 0 0 1− p 0 p 0 0
0 0 0 0 0 0 0 1− p 0 p 0
0 0 0 0 0 0 0 0 1− p 0 p
0 0 0 0 0 0 0 0 0 0 1



Problem 5 (See the Google Math slides on the course webpage for a similar problem)
Consider a tiny web consisting of 6 sites. Site 1 is a John’s homepage. John teaches

calculus and his site points to sites 2 and 3. Site 2 is the course syllabus and does not point
to any other sites. Site 3 is the calculus course website. It points back at John’s homepage
and also at the course syllabus. It also points at Emily’s webpage, site 5. (Emily is the TA
for the course.) Site 4 belongs to a friend of Emily’s, Jack. It points at Emily’s website
and at Jack’s old website, site 6. Emily’s website points at both Jack’s pages, the new one
4 and the old one 6. Jack’s old webpage 6 points at his new webpage 4.

a) Draw the graph corresponding to the above network.

b) Consider the stochastic process where from each site you go equally likely to any of the
sites it points to. What happens when you eventually reach site 2?

c) Extend the stochastic process by the rule: from a site that does not point at any other
site go equally likely to any site on the web (including the original site itself). Does this
process give a Markov chain? Write its transition matrix. What are its communication
classes? Which are transient and which are recurrent? Compute the invariant measure.
Does it give positive probability to all sites? Can we use it to rank the transient states?
Why or why not? (It is OK to use a computer or a laptop to compute the probability
measure.)

d) To overcome the problem with transient states, consider instead the following Markov
chain: from a site that does not point to any other site, go equally likely to any site on the
web (including the site itself); but from a site that does points somewhere, flip a coin that
gives heads with probability 15%. If the coin lands heads, go equally likely to any site on
the web (including the site itself). If, on the other hand, it lands tails then go equally likely
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to any site that the current site points to. Write the transition matrix for this chain. What
are its communication classes? Which are transient and which are recurrent? Compute the
invariant measure. Does it give positive probability to all sites?

Solution: The new matrix is

0.15×


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6

+ 0.85×


0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

 .

Its entries are all positive and so this Markov chain is irreducible and aperiodic and its
invariant measure must have all positive entries. I used Matlab to compute the left eigen-
vector corresponding to eigenvalue one. If the software you are using can only compute right
eigenvectors, then you can compute the right eigenvector of the transpose of the matrix.
This will be the same as the left eigenvector of the matrix. This gave the vector

[−0.1044 − 0.1488 − 0.1160 − 0.7043 − 0.4038 − 0.5425].

Normalizing by the total sum (to get entries that add up to one) we get the invariant
measure

[0.0517 0.0737 0.0574 0.3487 0.1999 0.2686].

e) Use your results in part d) to rank the six sites.
Solution: Sites with a higher value of the invariant measure are visited more often.

Therefore, the ranking, from higher to lower, is: 4, 6, 5, 2, 3, 1.


