Proportions

- The proportion of a population that has some outcome ("success") is p.
- The proportion of successes in a sample is measured by the sample proportion:
$\hat{p}=\frac{\text { number of successes in the sample }}{\text { total number of observations in the sample }}$
"p-hat"

Inference about a Proportion

Simple Conditions

Standardized Sample Proportion

- Inference about a population proportion p is based on the z statistic that results from standardizing \hat{p} :

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
$$

- z has approximately the standard normal distribution as long as the sample is not too small and the sample is not a large part of the entire population.

Building a Confidence Interval
Population Proportion

Standard Error
Since the population proportion p is unknown, the standard deviation of the sample proportion will need to be estimated by substituting \hat{p} for p.

$$
S E=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Case Study: Soft Drinks

A certain soft drink bottler wants to estimate the proportion of its customers that drink another brand of soft drink on a regular basis. A random sample of 100 customers yielded 18 who did in fact drink another brand of soft drink on a regular basis. Compute a 95% confidence interval ($z^{*}=1.960$) to estimate the proportion of interest.

Adjustment to Confidence Interval
More Accurate Confidence Intervals for a Proportion

- The standard confidence interval approach yields unstable or erratic inferences.
- By adding four imaginary observations (two successes \& two failures), the inferences can be stabilized.
- This leads to more accurate inference of a population proportion.

Confidence Interval

LARGE-SAMPLE CONFIDENCE INTERVAL FOR A POPULATION PROPORTION
Draw an SRS of size n from a population with unknown proportion p of successes. An approximate level C confidence interval for p is

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

where z^{*} is the critical value for the standard Normal density curve with area C between $-z^{*}$ and z^{*}.
Use this interval only when the counts of successes and failures in the sample are both at least 15 .

We are 95% confident that between 10.5% and 25.5% of the soft drink bottler's customers drink another brand of soft drink on a regular basis.

Adjustment to Confidence Interval
More Accurate Confidence Intervals for a Proportion
PLUS FOUR CONFIDENCE INTERVAL FOR A PROPORTION
Choose an SRS of size n from a large population that contains
population proportion p of "successes." The plus four estimate of p is $\tilde{p}=\frac{\text { count of successes in the sample }+2}{n+4}$
An approximate level C confidence interval for p is

$$
\tilde{p} \pm z^{\bullet} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}
$$

where z^{*} is the critical value for the standard Normal density curve with
area C between $-z^{*}$ and z^{*}

Case Study: Soft Drinks

"Plus Four" Confidence Interval $\widetilde{p}=\frac{18+2}{100+4}=\frac{20}{104}$

$$
\widetilde{p} \pm z^{*} \sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{n+4}}=\frac{20}{104} \pm 1.960 \sqrt{\frac{\frac{20}{104}\left(1-\frac{20}{104}\right)}{104}}
$$

$$
=0.192 \pm 0.076
$$

$$
=0.120 \text { to } 0.272
$$

We are 95% confident that between 12.0% and 27.2\% of the soft drink bottler's customers drink another brand of soft drink on a regular basis. (This is more

Case Study: Soft Drinks

Suppose a certain soft drink bottler wants to estimate the proportion of its customers that drink another brand of soft drink on a regular basis using a 99% confidence interval, and we are instructed to do so such that the margin of error does not exceed 1 percent (0.01).

What sample size will be required to enable us to create such an interval?

The Hypotheses for Proportions

- Null: $\mathrm{H}_{0}: p=p_{0}$
- One sided alternatives

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{a}}: p>p_{0} \\
& \mathrm{H}_{\mathrm{a}}: p<p_{0}
\end{aligned}
$$

- Two sided alternative

$$
\mathrm{H}_{\mathrm{a}}: p \neq p_{0}
$$

Choosing the Sample Size

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR
The level C confidence interval for a population proportion p will have margin of error approximately equal to a specified value m when the sample size is

$$
n=\left(\frac{z^{*}}{m}\right)^{2} p^{*}\left(1-p^{*}\right)
$$

where p^{*} is a guessed value for the sample proportion. The margin of error will be less than or equal to m if you take the guess p^{*} to be 0.5 .

Use this procedure even if you plan to use the "plus four" method.

Case Study: Soft Drinks

Since no preliminary results exist, use $p^{*}=0.5$.
$n=\left(\frac{z^{*}}{m}\right)^{2} p^{*}\left(1-p^{*}\right)=\left(\frac{2.576}{0.01}\right)^{2}(0.5)(1-0.5)=16589.44$
Thus, we will need to sample at least 16589.44 of the soft drink bottler's customers.
Note that since we cannot sample a fraction of an individual and using 16589 customers will yield a margin of error slightly more than 1% (0.01), our sample size should be $n=16590$ customers

Test Statistic for Proportions

- Start with the z statistic that results from standardizing \hat{p} :

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
$$

- Assuming that the null hypothesis is true $\left(\mathrm{H}_{0}: p=p_{0}\right)$, we use p_{0} in the place of p :

P-value for Testing Proportions

- $\mathrm{H}_{\mathrm{a}}: p>p_{0}$
* P-value is the probability of getting a value as large or larger than the observed test statistic (z) value.
- $\mathrm{H}_{\mathrm{a}}: p<p_{0}$
* P-value is the probability of getting a value as small or smaller than the observed test statistic (z) value.
- $\mathrm{H}_{\mathrm{a}}: p \neq p_{0}$
* P-value is two times the probability of getting a value as large or larger than the absolute value of the observed test statistic (z) value.
 Parental Discipline

Brown, C. S., (1994) "To spank or not to spank." USA Weekend, April 22-24, pp. 4-7.

What are parents' attitudes and practices on discipline?

Case Study: Discipline Reported Results

"The 1994 survey marks the first time a majority of parents reported not having physically disciplined their children in the previous year. Figures over the past six years show a steady decline in physical punishment, from a peak of 64 percent in 1988.'

- The 1994 sample proportion who did not spank or hit was 51% !
- Is this evidence that a majority of the population did not spank or hit? (Perform a test of significance.)

Case Study: Discipline

 Scenario- Nationwide random telephone survey of 1,250 adults that covered many topics
- 474 respondents had children under 18 living at home
- results on parental discipline are based on the smaller sample
- reported margin of error -5% for this smaller sample

Case Study: Discipline
 The Hypotheses

- Null: The proportion of parents who physically disciplined their children in 1993 is the same as the proportion [p] of parents who did not physically discipline their children.
$\left[\mathrm{H}_{0}: p=0.50\right.$]
- Alt: A majority (more than 50\%) of parents did not physically discipline their children in 1993. [$\left.\mathrm{H}_{\mathrm{a}}: p>0.50\right]$

Case Study: Discipline Test Statistic

Based on the sample

- $n=474$ (large, so proportions follow Normal distribution)
- no physical discipline: 51\%
- $\hat{p}=0.51$
- standard error of p-hat: $\sqrt{.50(1-.50) / 474}=0.023$
(where .50 is p_{0} from the null hypothesis)
- standardized score (test statistic)

$$
z=(0.51-0.50) / 0.023=0.43
$$

Case Study: Discipline

1. Hypotheses: $\mathrm{H}_{0}: p=0.50$
$\mathrm{H}_{\mathrm{a}}: p>0.50$
2. Test Statistic:

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.51-0.50}{\sqrt{\frac{(0.50)(1-0.50)}{474}}}=\frac{0.01}{0.023}=0.43
$$

3. P-value: P-value $=P(Z>0.43)=1-0.6664=0.3336$
4. Conclusion:

Since the P-value is larger than $\alpha=0.10$, there is no strong evidence that a majority of parents did not physically discipline their children during 1993.

