

- Population and Sample
- Researchers often want to answer questions about some large group of individuals (this group is called the **population**)
- Often the researchers cannot measure (or survey) all individuals in the population, so they measure a subset of individuals that is chosen to represent the entire population (this subset is called a sample)
- The researchers then use statistical techniques to make conclusions about the population based on the sample

Bad Sampling Designs

- Voluntary response sampling

 allowing individuals to <u>choose</u> to be in the sample
- Convenience sampling

 selecting individuals that are easiest to reach
- Both of these techniques are <u>biased</u>
 systematically favor certain outcomes

Voluntary Response

- Advice columnist Ann Landers asked her readers, "If you had it to do over again, would you have children?"
- A few weeks later, her column was headlined: "70% OF PARENTS SAY KIDS NOT WORTH IT."
- The people who responded felt strongly enough to take the trouble to write Ann Landers. Their letters showed that many of them were angry at their children.
- These people don't fairly represent all parents.
- A statistically designed opinion poll on the same issue a few months later found that 91% of parents would have children again.

Convenience Sampling

- Sampling mice from a large cage to study how a drug affects physical activity

 lab assistant reaches into the cage to select the mice one at a time until 10 are chosen
- Which mice will likely be chosen?
 could this sample yield biased results?

Simple Random Sampling

- Each individual in the population has the same chance of being chosen for the sample
- Each group of individuals (in the population) of the required size (n) has the same chance of being the sample actually selected
- Random selection:
 - "drawing names out of a hat"
 - table of random digits
 - computer software

Table of Random Digits

- Table B on pg. 692 of text
 - each entry is equally likely to be any of the 10 digits 0 through 9
 - entries are *independent* of each other (knowledge of one entry gives no information about any other entries)
 - each <u>pair</u> of entries is equally likely to be any of the 100 pairs 00, 01,..., 99
 - each <u>triple</u> of entries is equally likely to be any of the 1000 values 000, 001, ..., 999

Choosing a Simple Random Sample (SRS)

- STEP 1: Label each individual in the population
- STEP 2: Use Table B to select labels at random

Probability Sample

- a sample chosen by chance
- a SRS gives each member of the population an equal chance to be selected

Stratified Random Sample

- first divide the population into groups of similar individuals, called strata
- second, choose a separate SRS in <u>each</u> stratum
- third, combine these SRSs to form the full sample

BPS- 5n Ed Chapter 8 10

Stratified Random Sample Example

Suppose a university has the following student demographics:

 Undergraduate
 Graduate
 First Professional
 Special

 55%
 20%
 5%
 20%

A stratified random sample of 100 students could be chosen as follows: select a SRS of 55 undergraduates, a SRS of 20 graduates, a SRS of 5 first professional students, and a SRS of 20 special students: combine these 100 students.

Multistage Sample

- several stages of sampling are carried out
- useful for large-scale sample surveys
- samples at each stage may be SRSs, but are often stratified
- stages may involve other random sampling techniques as well (cluster, systematic, random digit dialing, ...)

Cautions about Sample Surveys

Undercoverage

 some individuals or groups in the population are left out of the process of choosing the sample

- Nonresponse
 - individuals chosen for the sample cannot be contacted or refuse to cooperate/respond
- Response bias

 behavior of respondent or interviewer may lead to
 inaccurate answers or measurements
- Wording of questions

- confusing or leading (biased) questions; words with

Nonresponse

- Advice columnist Ann Landers asked her readers, "If you had it to do over again, would you have children?"
- A few weeks later, her column was headlined: "70% OF PARENTS SAY KIDS NOT WORTH IT."
- The people who responded felt strongly enough to take the trouble to write Ann Landers. Their letters showed that many of them were angry at their children.
- These people don't fairly represent all parents.
- A statistically designed opinion poll on the same issue a few months later found that 91% of parents would have children again.

Response Bias

- A door-to-door survey is being conducted to determine drug use (past or present) of members of the community. Respondents may give socially acceptable answers (maybe not the truth!)
- For this survey on drug use, would it matter if a police officer is conducting the interview? (*bias from interviewer*)

Response Bias

Asking the Uninformed Washington Post National Weekly Edition (April 10-16, 1995, p. 36)

- A 1978 poll done in Cincinnati asked people whether they "favored or opposed repealing the 1975 Public Affairs Act."
 - There was no such act!
 - About one third of those asked expressed an opinion about it.

Wording of Questions

A newsletter distributed by a politician to his constituents gave the results of a "nationwide survey on Americans' attitudes about a variety of educational issues." One of the questions asked was, "Should your legislature adopt a policy to assist children in failing schools to opt out of that school and attend an alternative school--public, private, or parochial--of the parents' choosing?" From the wording of this question, can you speculate on what answer was desired? Explain.

Wording: Deliberate Bias

- "If you found a wallet with \$20 in it, would you return the money?"
- "If you found a wallet with \$20 in it, would you do the right thing and return the money?"

Wording: Unintentional Bias

- "I have taught several students over the past few years."
 - How many students do you think I have taught?
 - How many years am I referring to?
- "Over the past few days, how many servings of fruit have you eaten?"
 - How many days are you considering?
 - What constitutes a serving?

Wording: Unnecessary Complexity

- "Do you sometimes find that you have arguments with your family members and co-workers?"
 - Arguments with family members
 - Arguments with co-workers

Wording: Ordering of Questions

- "How often do you normally go out on a date? about <u>times a month.</u>"
- "How happy are you with life in general?"
 - Strong association between these questions.
 - If the ordering is reversed, then there would be no strong association between these questions

Inferences about the Population

- Values calculated from samples are used to make conclusions (*inferences*) about unknown values in the population
- Variability
 - different samples from the same population may yield different results for a particular value of interest
 - estimates from random samples will be closer to the true values in the population if the samples are larger
 - how close the estimates will likely be to the true values can be calculated -- this is called the margin of error

