

- Linear Regression
- <u>Objective</u>: To *quantify* the linear relationship between an explanatory variable (x) and response variable (y).
- We can then *predict* the average response for all subjects with a given value of the explanatory variable.

Prediction via Regression Line

Example: predicting number (y) of new adult birds that join the colony based on the percent (x) of adult birds that return to the colony from the previous year.

Least Squares

- Used to determine the "best" line
- We want the line to be as close as possible to the data points in the vertical (y) direction (since that is what we are trying to predict)
- Least Squares: use the line that minimizes the sum of the squares of the vertical distances of the data points from the line

Least Squares Regression Line

- Regression equation: $\hat{y} = a + bx$
 - x is the value of the explanatory variable
 - "y-hat" is the average value of the response variable (predicted response for a value of x)
 - note that *a* and *b* are just the intercept and slope of a straight line
 - note that *r* and *b* are not the same thing, but their signs will agree

Prediction via Regression Line

- The regression equation is y-hat = 31.9343 - 0.3040x
 - y-hat is the average number of new birds for all colonies with percent x returning
- For all colonies with 60% returning, we *predict* the average number of new birds to be 13.69: 31.9343 - (0.3040)(60) = 13.69 birds
- Suppose we know that an individual colony has 60% returning. What would we *predict* the number of new birds to be for just that colony?

Per Capita Gross Domestic Product and Average Life Expectancy for Countries in Western Europe

Regression Calculation Case Study		
Country	Per Capita GDP (x)	Life Expectancy (y)
Austria	21.4	77.48
Belgium	23.2	77.53
Finland	20.0	77.32
France	22.7	78.63
Germany	20.8	77.17
Ireland	18.6	76.39
Italy	21.5	78.51
Netherlands	22.0	78.15
Switzerland	23.8	78.99
United Kingdom	21.2	77.37
BPS - 5th Ed.	Chapter 5	9

Regression Line Calculation

• Regression equation: $\hat{y} = a + bx$

 $b = r \frac{s_y}{s_y}$

 $a = \overline{y} - b\overline{x}$ where s_x and s_y are the standard deviations of the two variables, and *r* is their correlation

Chapter 5

Coefficient of Determination (R²)

- Measures usefulness of regression prediction
- ◆ R² (or r², the square of the correlation): measures what fraction of the variation in the values of the response variable (y) is explained by the regression line
 - * r=1: R²=1: regression line explains all (100%) of the variation in y
 - * r=.7: R²=.49: regression line explains almost half (50%) of the variation in y

Residuals

 A residual is the difference between an observed value of the response variable and the value predicted by the regression line:

residual = y -
$$\hat{y}$$

 An *outlier* is an observation that lies far away from the other observations

outliers are often *influential* for the leastsquares regression line, meaning that the removal of such points would markedly change the equation of the line

Outliers: Case Study

17

Gesell Adaptive Score and Age at First Word

BPS - 5th Ed.

Chapter 5

Caution: Beware of Extrapolation

- Regression line: y-hat = 71.95 + .383 x
- height at age 42 months? y-hat = 88 height at age 30 years? y-hat = 209.8

(and the decision to try meditation) Chapter 5

Caution: Correlation Does Not Imply Causation

Even very strong correlations may not correspond to a real causal relationship (changes in x actually

causing changes in y).

(correlation may be explained by a lurking variable)

Caution: Correlation Does Not Imply Causation Social Relationships and Health

House, J., Landis, K., and Umberson, D. "Social Relationships and Health," Science, Vol. 241 (1988), pp 540-545.

- · Does lack of social relationships cause people to become ill? (there was a strong correlation)
- Or, are unhealthy people less likely to establish and maintain social relationships? (reversed relationship)
- Or, is there some other factor that predisposes people both to have lower social activity and become ill?

Evidence of Causation

- Other considerations:
 - The association is strong
 - The association is *consistent*
 - The connection happens in repeated trials
 - $\boldsymbol{\ast}$ The connection happens under varying conditions
- A properly conducted <u>experiment</u> establishes the connection (chapter 9)

