Chapter 2

Describing Distributions with Numbers

Mean or Average

- Traditional measure of center
- Sum the values and divide by the number of values

$$
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Numerical Summaries

- Center of the data
- mean
- median
- Variation
- range
- quartiles (interquartile range)
- variance
- standard deviation

Median (M)

- A resistant measure of the data's center
- At least half of the ordered values are less than or equal to the median value
- At least half of the ordered values are greater than or equal to the median value
- If n is odd, the median is the middle ordered value
- If n is even, the median is the average of the two middle ordered values

Median (M)

Location of the median: $L(M)=(n+1) / 2$, where $n=$ sample size.

Example: If 25 data values are recorded, the Median would be the $(25+1) / 2=13^{\text {th }}$ ordered value.

Median

- Example 1 data: 246

Median $(M)=4$

- Example 2 data: 2468

Median = 5 (ave. of 4 and 6)

- Example 3 data: 624 Median $\neq 2$
(order the values: 246 , so Median $=4$)

Comparing the Mean \& Median

- The mean and median of data from a symmetric distribution should be close together. The actual (true) mean and median of a symmetric distribution are exactly the same.
- In a skewed distribution, the mean is farther out in the long tail than is the median [the mean is 'pulled' in the direction of the possible outlier(s)].

Answer

Both! Average is affected by outliers while median is not. For example, if one house is extremely expensive, then the average will rise. The median would ignore that outlier.

Spread, or Variability

- If all values are the same, then they all equal the mean. There is no variability.
- Variability exists when some values are different from (above or below) the mean.
- We will discuss the following measures of spread: range, quartiles, variance, and standard deviation

Question

A recent newspaper article in California said that the median price of single-family homes sold in the past year in the local area was \$136,000 and the mean price was $\$ 149,160$. Which do you think is more useful to someone considering the purchase of a home, the median or the mean?

Case Study

Airline fares
appeared in the New York Times on November 5, 1995
"...about 60\% of airline passengers 'pay less than the average fare' for their specific flight."
-How can this be?
13% of passengers pay more than 1.5 times the average fare for their flight

Range

- One way to measure spread is to give the smallest (minimum) and largest (maximum) values in the data set;

Range $=\max -\min$

- The range is strongly affected by outliers
(e.g. one house is extremely expensive and the rest all have the same price. The range is large while there is little variability!)

Quartiles

- Three numbers which divide the ordered data into four equal sized groups.
- Q_{1} has 25% of the data below it.
$-Q_{2}$ has 50% of the data below it. (Median)
- Q_{3} has 75% of the data below it.

Weight Data: Sorted

100	124	148	170	185	215
101	125	150	170	185	220
106	127	150	172	186	260
106	128	152	176	187	
110	130	155	175	192	
110	130	157	180	194	
119	133	+60	180	195	
120	135	165	180	203	
120	139	165	180	210	
123	140	170	185	212	

$\mathrm{L}(\mathrm{M})=(53+1) / 2=27 \quad \mathrm{~L}(\mathrm{Q} 1)=(26+1) / 2=13.5$

Five-Number Summary

- minimum $=100$
- $Q_{1}=127.5$
- $M=165$
- $Q_{3}=185$
$\left\{\begin{array}{l}\text { Interquartile } \\ \text { Range (IQR) } \\ =Q_{3}-Q_{1} \\ =57.5\end{array}\right.$
- maximum $=260$

IQR gives spread of middle 50\% of the data

Obtaining the Quartiles

- Order the data.
- For \mathbf{Q}_{2}, just find the median.
- For \mathbf{Q}_{1}, look at the lower half of the data values, those to the left of the median location; find the median of this lower half.
- For \mathbf{Q}_{3}, look at the upper half of the data values, those to the right of the median location; find the median of this upper

Weight Data: Quartiles

- $Q_{1}=127.5$
- $Q_{2}=165$ (Median)
- $Q_{3}=185$

Boxplot

- Central box spans Q_{1} and Q_{3}.
- A line in the box marks the median M.
- Lines extend from the box out to the minimum and maximum.

Weight Data: Boxplot

Identifying Outliers

- The central box of a boxplot spans Q_{1} and Q_{3}; recall that this distance is the Interquartile Range (IQR).
- We call an observation a suspected outlier if it falls more than $1.5 \times I Q R$ above the third quartile or below the first quartile.

Deviations

- what is a typical deviation from the mean? (standard deviation)
- small values of this typical deviation indicate small variability in the data
\bullet large values of this typical deviation indicate large variability in the data

Example from Text: Boxplots

Variance and Standard Deviation

- Recall that variability exists when some values are different from (above or below) the mean.
- Each data value has an associated deviation from the mean:

$$
x_{i}-\bar{x}
$$

Variance

- Find the mean
- Find the deviation of each value from the mean
- Square the deviations
- Sum the squared deviations
- Divide the sum by $n-1$
(gives typical squared deviation from mean)

Variance Formula

$$
s^{2}=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Variance and Standard Deviation
Example from Text
Metabolic rates of 7 men (cal./24hr.) :
$\begin{array}{lllllll}1792 & 1666 & 1362 & 1614 & 1460 & 1867 & 1439\end{array}$

```
\overline { x } = \frac { 1 7 9 2 + 1 6 6 6 + 1 3 6 2 + 1 6 1 4 + 1 4 6 0 + 1 8 6 7 + 1 4 3 9 } { 7 }
    = 11,200
    =1600
```


Variance and Standard Deviation
Example from Text

$$
s^{2}=\frac{214,870}{7-1}=35,811.67
$$

$$
s=\sqrt{35,811.67}=189.24 \text { calories }
$$

Standard Deviation Formula typical deviation from the mean

$$
S=\sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Variance and Standard Deviation Example from Text

Observations	Deviations	Squared deviations
x_{i}	$x_{\text {i }}$	- $\left(x_{i}-\bar{x}\right)^{2}=$
1792	$1792-1600=192$	$(192)^{2}=36,864$
1666	$1666-1600=66$	$(66)^{2}=4,356$
1362	$1362-1600=-238$	$(-238)^{2}=56,644$
1614	$1614-1600=14$	$(14)^{2}=196$
1460	$1460-1600=-140$	$(-140)^{2}=19,600$
1867	$1867-1600=267$	$(267)^{2}=71,289$
1439	$1439-1600=-161$	$(-161)^{2}=25,921$
	sum $=0$	sum $=214,870$

Choosing a Summary

- Outliers affect the values of the mean and standard deviation
- The five-number summary should be used to describe center and spread for skewed distributions, or when outliers are present.
- Use the mean and standard deviation for reasonably symmetric distributions that are free of outliers.
- Best to use both!

Number of Books Read for Pleasure:
Sorted

Five-Number Summary: Boxplot
Median $=3$
interquartile range $(\mathrm{iqr})=5.5-1.0=4.5$
range $=99-0=99$

Mean $=7.06$ s.d. $=14.43$

